“Lenslet VR: Optics for Glasses-sized Virtual Reality Display” by Bang, Jo, Chae and Lee – ACM SIGGRAPH HISTORY ARCHIVES

“Lenslet VR: Optics for Glasses-sized Virtual Reality Display” by Bang, Jo, Chae and Lee

  • ©

Conference:


Type(s):


Interest Area:


    New Technologies

Title:

    Lenslet VR: Optics for Glasses-sized Virtual Reality Display

Session/Category Title:   TVCG Session on VR


Presenter(s)/Author(s):



Abstract:


    We propose a new thin and flat virtual reality (VR) display design using a Fresnel lenslet array, a Fresnel lens, and a polarization-based optical folding technique. The proposed optical system has a wide field of view (FOV) of 102˚×102˚, a wide eye-box of 8.8 mm, and an ergonomic eye-relief of 20 mm. Simultaneously, only 3.3 mm of physical distance is required between the display panel and the lens, so that the integrated VR display can have a compact form factor like sunglasses. Moreover, since all lenslet of the lenslet array is designed to operate under on-axis condition with low aberration, the discontinuous pupil swim distortion between the lenslets is hardly observed. In addition, all on-axis lenslets can be designed identically, reducing production cost, and even off-the-shelf Fresnel optics can be used. In this paper, we introduce how we design system parameters and analyze system performance. Finally, we demonstrate two prototypes and experimentally verify that the proposed VR display system has the expected performance while having a glasses-like form factor.

References:


    [1] Magic leap. https://www.magicleap.com/. Accessed: 2020-09-01.

    [2] Oculus quest. https://www.oculus.com/quest/. Accessed: 2020-09- 01.

    [3] Panasonic vr eyeglasses. https://news.panasonic.com/global/ press/data/2020/01/en200107-5/en200107-5.html. Accessed: 2020-09-01.

    [4] Pimax 8k x. https://www.pimax.com/products/vision-8k-x. Accessed: 2020-09-01.

    [5] Starvr. https://www.starvr.com/. Accessed: 2020-09-01.

    [6] Vibe cosmos. https://www.vive.com/. Accessed: 2020-09-01.

    [7] Xtal. https://vrgineers.com/. Accessed: 2020-09-01.

    [8] K. Aks¸it, J. Kautz, and D. Luebke. Slim near-eye display using pinhole aperture arrays. Appl. Opt., 54(11):3422–3427, Apr 2015.

    [9] K. Aks¸it, J. Kautz, and D. Luebke. Slim near-eye display using pinhole aperture arrays. Applied optics, 54(11):3422–3427, 2015.

    [10] R. Burke and L. Brickson. Focus cue enabled head-mounted display via microlens array. TOG, 32:220, 2013.

    [11] D. Cheng, Y. Wang, C. Xu, W. Song, and G. Jin. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Opt. Express, 22(17):20705–20719, Aug 2014.

    [12] P.-Y. Chou, J.-Y. Wu, S.-H. Huang, C.-P. Wang, Z. Qin, C.-T. Huang, P.-Y. Hsieh, H.-H. Lee, T.-H. Lin, and Y.-P. Huang. Hybrid light field head-mounted display using time-multiplexed liquid crystal lens array for resolution enhancement. Optics Express, 27(2):1164–1177, 2019.

    [13] T. Fujii, A. Goulet, K. Hattori, K. Konno, A. Tanaka, R. Bosmans, M. Sawada, and H. Yazawa. Fresnel lens sidewall design for imaging optics. Journal of the European Optical Society-Rapid publications, 10, 2015.

    [14] J.-Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee. See-through optical combiner for augmented reality headmounted display: index-matched anisotropic crystal lens. Scientific reports, 7(1):1–11, 2017.

    [15] H. Huang and H. Hua. An integral-imaging-based head-mounted light field display using a tunable lens and aperture array. Journal of the Society for Information Display, 25(3):200–207, 2017.

    [16] C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee. Retinal 3d: Augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph., 36(6), Nov. 2017.

    [17] D. Karl, K. Soderquest, M. Farhi, A. Grant, D. P. Krohn, B. Murphy, J. Schneiderman, and B. Straughan. 2019 augmented and virtual reality survey report, 2019.

    [18] J. Kim, Y. Jeong, M. Stengel, K. Aks¸it, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, et al. Foveated ar: dynamically-foveated augmented reality display. ACM Transactions on Graphics (TOG), 38(4):1– 15, 2019.

    [19] G. A. Koulieris, K. Aks¸it, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richardt. Near-eye display and tracking technologies for virtual and augmented reality. In Computer Graphics Forum, volume 38, pages 493– 519. Wiley Online Library, 2019.

    [20] B. C. Kress and W. J. Cummings. 11-1: Invited paper: Towards the ultimate mixed reality experience: Hololens display architecture choices. In SID Symposium Digest of Technical Papers, volume 48, pages 127–131. Wiley Online Library, 2017.

    [21] D. Lanman and D. Luebke. Near-eye light field displays. ACM Trans. Graph., 32(6), Nov. 2013.

    [22] D. Lanman and D. Luebke. Hybrid optics for near-eye displays, Jan. 30 2018. US Patent 9,880,325.

    [23] T. Levola. Diffractive optics for virtual reality displays. Journal of the Society for Information Display, 14(5):467–475, 2006.

    [24] A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs. Pinlight displays: Wide field of view augmented reality eyeglasses using defocused point light sources. In ACM SIGGRAPH 2014 Emerging Technologies, SIGGRAPH ’14, New York, NY, USA, 2014. Association for Computing Machinery.

    [25] A. Maimone and J. Wang. Holographic optics for thin and lightweight virtual reality. ACM Transactions on Graphics (TOG), 39(4):67–1, 2020.

    [26] K. Masaoka, Y. Nishida, M. Sugawara, E. Nakasu, and Y. Nojiri. Sensation of realness from high-resolution images of real objects. IEEE transactions on broadcasting, 59(1):72–83, 2013.

    [27] S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee. Augmented reality near-eye display using pancharatnamberry phase lenses. Scientific reports, 9(1):1–10, 2019.

    [28] S. Moon, S.-W. Nam, Y. Jeong, C.-K. Lee, H.-S. Lee, and B. Lee. Compact augmented reality combiner using pancharatnam-berry phase lens. IEEE Photonics Technology Letters, 32(5):235–238, 2020.

    [29] B. Narasimhan. Ultra-compact pancake optics based on thineyes superresolution technology for virtual reality headsets. page 134, 05 2018.

    [30] H. S. Park, R. Hoskinson, H. Abdollahi, and B. Stoeber. Compact near-eye display system using a superlens-based microlens array magnifier. Optics Express, 23(24):30618–30633, 2015.

    [31] K. Pfeiffer, L. Ghazaryan, U. Schulz, and A. Szeghalmi. Wide-angle broadband antireflection coatings prepared by atomic layer deposition. ACS Applied Materials & Interfaces, 11(24):21887–21894, 2019.

    [32] J.-A. Piao, G. Li, M.-L. Piao, and N. Kim. Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer. J. Opt. Soc. Korea, 17(3):242–248, Jun 2013.

    [33] J. Ratcliff, A. Supikov, S. Alfaro, and R. Azuma. Thinvr: Heterogeneous microlens arrays for compact, 180 degree fov vr near-eye displays. IEEE Transactions on Visualization and Computer Graphics, 26(5):1981–1990, 2020.

    [34] K. Ratnam, R. Konrad, D. Lanman, and M. Zannoli. Retinal image quality in near-eye pupil-steered systems. Optics Express, 27(26):38289–38311, 2019.

    [35] J. P. Rolland, A. Yoshida, L. D. Davis, and J. H. Reif. High-resolution inset head-mounted display. Applied optics, 37(19):4183–4193, 1998.

    [36] R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang. Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure. Appl. Opt., 51(20):4703–4708, Jul 2012.

    [37] G. Tan, Y.-H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S.-T. Wu. Foveated imaging for near-eye displays. Optics express, 26(19):25076– 25085, 2018.

    [38] H. Urey and K. D. Powell. Microlens-array-based exit-pupil expander for full-color displays. Applied optics, 44(23):4930–4936, 2005.

    [39] G. Vallerotto, S. Askins, M. Victoria, I. Anton, and G. Sala. A novel ´ achromatic fresnel lens for high concentrating photovoltaic systems. In AIP Conference Proceedings, volume 1766, page 050007. AIP Publishing LLC, 2016.

    [40] G. Wetzstein, D. R. Lanman, M. W. Hirsch, and R. Raskar. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting. 2012.

    [41] B. Wheelwright, J. Gollier, and M. Geng. Hybrid fresnel lens with reduced artifacts, Nov. 20 2018. US Patent 10,133,076.

    [42] T. L. Wong, Z. Yun, G. Ambur, and J. Etter. Folded optics with birefringent reflective polarizers. In B. C. Kress and P. Schelkens, editors, Digital Optical Technologies 2017, volume 10335, pages 84 – 90. International Society for Optics and Photonics, SPIE, 2017.

    [43] J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang. Resolution enhanced light field near eye display using e-shifting method with birefringent plate. Journal of the Society for Information Display, 26(5):269–279, 2018.

    [44] Y. Yamaguchi and Y. Takaki. See-through integral imaging display with background occlusion capability. Appl. Opt., 55(3):A144–A149, Jan 2016.

    [45] C. Yao, D. Cheng, and Y. Wang. Design and stray light analysis of a lensletarray-based see-through light-field near-eye display. In Digital Optics for Immersive Displays, volume 10676, page 106761A. International Society for Optics and Photonics, 2018.

    [46] T. Zhan, J. Zou, J. Xiong, H. Chen, S. Liu, Y. Dong, and S.-T. Wu. Planar optics enables chromatic aberration correction in immersive near-eye displays. In Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR), volume 11310, page 1131003. International Society for Optics and Photonics, 2020.

    [47] N. Zhang, J. Liu, J. Han, X. Li, F. Yang, X. Wang, B. Hu, and Y. Wang. Improved holographic waveguide display system. Applied Optics, 54(12):3645–3649, 2015.


Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org