“Integral formulations of volumetric transmittance” by Georgiev, Misso, Hachisuka, Nowrouzezahrai, Křivánek, et al. …
Conference:
Type(s):
Title:
- Integral formulations of volumetric transmittance
Session/Category Title: Light Transport
Presenter(s)/Author(s):
- Iliyan Georgiev
- Zackary Misso
- Toshiya Hachisuka
- Derek Nowrouzezahrai
- Jaroslav Křivánek
- Wojciech Jarosz
Moderator(s):
Abstract:
Computing the light attenuation between two given points is an essential yet expensive task in volumetric light transport simulation. Existing unbiased transmittance estimators are all based on “null-scattering” random walks enabled by augmenting the media with fictitious matter. This formulation prevents the use of traditional Monte Carlo estimator variance analysis, thus the efficiency of such methods is understood from a mostly empirical perspective. In this paper, we present several novel integral formulations of volumetric transmittance in which existing estimators arise as direct Monte Carlo estimators. Breaking from physical intuition, we show that the null-scattering concept is not strictly required for unbiased transmittance estimation, but is a form of control variates for effectively reducing variance. Our formulations bring new insight into the problem and the efficiency of existing estimators. They also provide a framework for devising new types of transmittance estimators with distinct and complementary performance tradeoffs, as well as a clear recipe for applying sample stratification.
References:
1. James Richard Arvo. 1995. Analytic Methods for Simulated Light Transport. Ph.D. Thesis. Yale University, New Haven, Connecticut.Google Scholar
2. Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan Novák, Steve Marschner, and Wojciech Jarosz. 2018. A Radiative Transfer Framework for Non-Exponential Media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (Nov. 2018), 225:1–225:17. https://doi.org/10/gfz2cmGoogle Scholar
3. David Blackwell. 1947. Conditional Expectation and Unbiased Sequential Estimation. The Annals of Mathematical Statistics 18, 1 (03 1947), 105–110. https://doi.org/10/cjr9wkGoogle ScholarCross Ref
4. T. E. Booth. 2007. Unbiased Monte Carlo Estimation of the Reciprocal of an Integral. Nuclear Science and Engineering 156, 3 (2007), 403–407. https://doi.org/10/gfzq76Google ScholarCross Ref
5. Eva Cerezo, Frederic Pérez, Xavier Pueyo, Francisco J. Seron, and François X. Sillion. 2005. A Survey on Participating Media Rendering Techniques. The Visual Computer 21, 5 (June 2005), 303–328. https://doi.org/10/cjxqdtGoogle ScholarDigital Library
6. Subrahmanyan Chandrasekhar. 1960. Radiative Transfer. Dover Publications, NY.Google Scholar
7. W. A. Coleman. 1968. Mathematical Verification of a Certain Monte Carlo Sampling Technique and Applications of the Technique to Radiation Transport Problems. Nuclear Science and Engineering 32, 1 (April 1968), 76–81. https://doi.org/10/gfzndgGoogle ScholarCross Ref
8. S. N. Cramer. 1978. Application of the Fictitious Scattering Radiation Transport Model for Deep-Penetration Monte Carlo Calculations. Nuclear Science and Engineering 65, 2 (1978), 237–253. https://doi.org/10/gfzq74Google ScholarCross Ref
9. M. Galtier, S. Blanco, C. Caliot, C. Coustet, J. Dauchet, M. El Hafi, V. Eymet, R. Fournier, J. Gautrais, A. Khuong, B. Piaud, and G. Terrée. 2013. Integral Formulation of Null-Collision Monte Carlo Algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer 125 (Aug. 2013), 57–68. https://doi.org/10/f446pgGoogle ScholarCross Ref
10. G. Gripenberg, Stig-Olof. Londen, and Olof J. Staffans. 1990. Volterra Integral and Functional Equations. Cambridge University Press.Google Scholar
11. David S. Immel, Michael F. Cohen, and Donald P. Greenberg. 1986. A Radiosity Method for Non-Diffuse Environments. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 133–142. https://doi.org/10/dmjm9tGoogle ScholarDigital Library
12. Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. 2018. A Radiative Transfer Framework for Spatially-Correlated Materials. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 37, 4 (July 2018), 83:1–83:13. https://doi.org/10/gd52qqGoogle Scholar
13. James T. Kajiya. 1986. The Rendering Equation. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 143–150. https://doi.org/10/cvf53jGoogle ScholarDigital Library
14. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm. Computer Graphics Forum 21, 3 (Sept. 2002), 531–540. https://doi.org/10/bfrsqnGoogle ScholarCross Ref
15. Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying Points, Beams, and Paths in Volumetric Light Transport Simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 33, 4 (July 2014), 103:1–103:13. https://doi.org/10/f6cz72Google ScholarDigital Library
16. Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition Tracking for Rendering Heterogeneous Volumes. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 111:1–111:16. https://doi.org/10/gbxjxgGoogle Scholar
17. Eric P. Lafortune and Yves D. Willems. 1993. Bi-Directional Path Tracing. In Proceedings of the International Conference on Computational Graphics and Visualization Techniques (Compugraphics), H. P. Santo (Ed.), Vol. 93. Alvor, Portugal, 145–153.Google Scholar
18. Jaakko Leppänen. 2010. Performance of Woodcock Delta-Tracking in Lattice Physics Applications Using the Serpent Monte Carlo Reactor Physics Burnup Calculation Code. Annals of Nuclear Energy 37, 5 (May 2010), 715–722. https://doi.org/10/d3fg8pGoogle ScholarCross Ref
19. Michael D. McKay, Richard J. Beckman, and William Jay Conover. 1979. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 21, 2 (May 1979), 239–245. https://doi.org/10/gfzncdGoogle Scholar
20. Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. 2019. A null-scattering path integral formulation of light transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 38, 4 (July 2019). https://doi.org/10/gf6rzbGoogle Scholar
21. Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Transactions on Graphics 32, 3 (July 2013), 27:1–27:22. https://doi.org/10/gfzq7sGoogle ScholarDigital Library
22. Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo Methods for Volumetric Light Transport Simulation. Computer Graphics Forum (Proceedings of Eurographics State of the Art Reports) 37, 2 (May 2018), 551–576. https://doi.org/10/gd2jqqGoogle ScholarCross Ref
23. Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual Ratio Tracking for Estimating Attenuation in Participating Media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 33, 6 (Nov. 2014), 179:1–179:11. https://doi.org/10/f6r2nqGoogle ScholarDigital Library
24. Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis Light Transport for Participating Media. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), W. Hansmann, W. Purgathofer, François X. Sillion, Bernard Péroche, and Holly Rushmeier (Eds.). Springer-Verlag, Vienna, 11–22. https://doi.org/10/gfzm93Google ScholarCross Ref
25. Ken H. Perlin and Eric M. Hoffert. 1989. Hypertexture. Computer Graphics (Proceedings of SIGGRAPH) 23, 3 (July 1989), 253–262. https://doi.org/10/fdmsxdGoogle ScholarDigital Library
26. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3 ed.). Morgan Kaufmann, San Francisco, CA, USA.Google Scholar
27. Hao Qin, Xin Sun, Qiming Hou, Baining Guo, and Kun Zhou. 2015. Unbiased Photon Gathering for Light Transport Simulation. ACM Transactions on Graphics 34, 6, Article 208 (Oct. 2015), 14 pages. https://doi.org/10/f7wrc6Google ScholarDigital Library
28. Matthias Raab, Daniel Seibert, and Alexander Keller. 2008. Unbiased Global Illumination with Participating Media. In Monte Carlo and Quasi-Monte Carlo Methods, Alexander Keller, Stefan Heinrich, and Harald Niederreiter (Eds.). Springer-Verlag, 591–605.Google Scholar
29. Sheldon M. Ross. 1996. Stochastic processes. Wiley.Google Scholar
30. Peter Shirley. 1991. Discrepancy as a Quality Measure for Sample Distributions. In Proceedings of Eurographics. Eurographics Association, Amsterdam, North-Holland, 183–194. https://doi.org/10/gfznchGoogle Scholar
31. Jerome Spanier. 1966. Two Pairs of Families of Estimators for Transport Problems. SIAM J. Appl. Math. 14, 4 (July 1966), 702–713. https://doi.org/10/dg35ntGoogle ScholarCross Ref
32. Jerome Spanier and Ely Meyer Gelbard. 1969. Monte Carlo Principles and Neutron Transport Problems. Addison-Wesley, Reading.Google Scholar
33. László Szirmay-Kalos, Balázs Tóth, and Milán Magdics. 2011. Free Path Sampling in High Resolution Inhomogeneous Participating Media. Computer Graphics Forum 30, 1 (March 2011), 85–97. https://doi.org/10/bpkdzmGoogle ScholarCross Ref
34. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Thesis. Stanford University, United States – California.Google ScholarDigital Library
35. Eric Veach and Leonidas J. Guibas. 1994. Bidirectional Estimators for Light Transport. In Photorealistic Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), Georgios Sakas, Peter Shirley, and Stefan Müller (Eds.). Springer-Verlag, 145–167. https://doi.org/10/gfznbhGoogle Scholar
36. Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In Annual Conference Series (Proceedings of SIGGRAPH), Vol. 29. ACM Press, 419–428. https://doi.org/10/d7b6n4Google Scholar
37. Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In Annual Conference Series (Proceedings of SIGGRAPH), Vol. 31. ACM Press, 65–76. https://doi.org/10/bkjqj4Google Scholar
38. Tien-Tsin Wong, Wai-Shing Luk, and Pheng-Ann Heng. 1997. Sampling with Hammersley and Halton Points. Journal of Graphics Tools 2, 2 (1997), 9–24. https://doi.org/10/c936Google ScholarDigital Library
39. E. R. Woodcock, T. Murphy, P. J. Hemmings, and T. C. Longworth. 1965. Techniques Used in the GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry. In Applications of Computing Methods to Reactor Problems. Argonne National Laboratory.Google Scholar


