“High-quality capture of eyes” by Bérard, Bradley, Nitti, Beeler and Gross – ACM SIGGRAPH HISTORY ARCHIVES

“High-quality capture of eyes” by Bérard, Bradley, Nitti, Beeler and Gross

  • 2014 SA Technical Papers Berard_High-Quality Capture of Eyes

Conference:


Type(s):


Title:

    High-quality capture of eyes

Session/Category Title:   Capturing Everything


Presenter(s)/Author(s):



Abstract:


    Even though the human eye is one of the central features of individual appearance, its shape has so far been mostly approximated in our community with gross simplifications. In this paper we demonstrate that there is a lot of individuality to every eye, a fact that common practices for 3D eye generation do not consider. To faithfully reproduce all the intricacies of the human eye we propose a novel capture system that is capable of accurately reconstructing all the visible parts of the eye: the white sclera, the transparent cornea and the non-rigidly deforming colored iris. These components exhibit very different appearance properties and thus we propose a hybrid reconstruction method that addresses them individually, resulting in a complete model of both spatio-temporal shape and texture at an unprecedented level of detail, enabling the creation of more believable digital humans. Finally, we believe that the findings of this paper will alter our community’s current assumptions regarding human eyes, and our work has the potential to significantly impact the way that eyes will be modelled in the future.

References:


    1. Alexander, O., Rogers, M., Lambeth, W., Chiang, J.-Y., Ma, W.-C., Wang, C.-C., and Debevec, P. 2010. The digital emily project: Achieving a photorealistic digital actor. IEEE CG&A 30, 4, 20–31.
    2. Ares, M., and Royo, S. 2006. Comparison of cubic b-spline and zernike-fitting techniques in complex wavefront reconstruction. Applied optics 45, 27, 6954–6964.
    3. Atcheson, B., Heide, F., and Heidrich, W. 2010. CAL-Tag: High precision fiducial markers for camera calibration. In International Workshop on Vision, Modeling and Visualization.
    4. Atchison, D. A., Jones, C. E., Schmid, K. L., Pritchard, N., Pope, J. M., Strugnell, W. E., and Riley, R. A. 2004. Eye shape in emmetropia and myopia. Investigative Ophthalmology & Visual Science 45, 10, 3380–3386.Cross Ref
    5. Beeler, T., Bickel, B., Sumner, R., Beardsley, P., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 40:1–40:9.
    6. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 75.
    7. Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner, S., Sumner, R. W., and Gross, M. 2012. Coupled 3D reconstruction of sparse facial hair and skin. ACM Trans. Graphics (Proc. SIGGRAPH) 31, 4, 117:1–117:10.
    8. Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. on PAMI 14, 2, 239–256.
    9. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In Proc. of the 26th annual conference on Computer graphics and interactive techniques, 187–194.
    10. Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 4, 41.
    11. Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. 2004. High accuracy optical flow estimation based on a theory for warping. In ECCV. Springer, 25–36.
    12. Eagle Jr, R. 1988. Iris pigmentation and pigmented lesions: an ultrastructural study. Trans. of the American Ophthalmological Society 86, 581.
    13. Efros, A. A., and Leung, T. K. 1999. Texture synthesis by non-parametric sampling. In IEEE ICCV, 1033–1038.
    14. François, G., Gautron, P., Breton, G., and Bouatouch, K. 2009. Image-based modeling of the human eye. IEEE TVCG 15, 5, 815–827.
    15. Garrido, P., Valgaerts, L., Wu, C., and Theobalt, C. 2013. Reconstructing detailed dynamic face geometry from monocular video. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 32, 6, 158.
    16. Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., and Debevec, P. 2011. Multiview face capture using polarized spherical gradient illumination. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 30, 6, 129.
    17. Graham, P., Tunwattanapong, B., Busch, J., Yu, X., Jones, A., Debevec, P., and Ghosh, A. 2013. Measurement-based synthesis of facial microgeometry. In Computer Graphics Forum, vol. 32, 335–344.Cross Ref
    18. Hachol, A., Szczepanowska-Nowak, W., Kasprzak, H., Zawojska, I., Dudzinski, A., Kinasz, R., and Wygledowska-Promienska, D. 2007. Measurement of pupil reactivity using fast pupillometry. Physiological measurement 28, 1, 61.
    19. Halstead, M. A., Barsky, B. A., Klein, S. A., and Mandell, R. B. 1996. Reconstructing curved surfaces from specular reflection patterns using spline surface fitting of normals. In Proceedings of Computer graphics and interactive techniques, 335–342.
    20. Haralick, R. M. 1979. Statistical and structural approaches to texture. Proc. IEEE 67, 5, 786–804.Cross Ref
    21. Hernández, C., Vogiatzis, G., and Cipolla, R. 2008. Multiview photometric stereo. IEEE PAMI 30, 3, 548–554.
    22. Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., et al. 1991. Optical coherence tomography. Science 254, 5035, 1178–1181.
    23. Ihrke, I., Kutulakos, K. N., Lensch, H. P., Magnor, M., and Heidrich, W. 2008. State of the art in transparent and specular object reconstruction. In Eurographics 2008 – State of the Art Reports.
    24. Lam, M. W. Y., and Baranoski, G. V. G. 2006. A predictive light transport model for the human iris. In Computer Graphics Forum, vol. 25, 359–368.Cross Ref
    25. Lefohn, A., Budge, B., Shirley, P., Caruso, R., And Reinhard, E. 2003. An ocularist’s approach to human iris synthesis. IEEE CG&A 23, 6, 70–75.
    26. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Proc. Rendering Techniques, 183–194.
    27. Pamplona, V. F., Oliveira, M. M., and Baranoski, G. V. 2009. Photorealistic models for pupil light reflex and iridal pattern deformation. ACM Trans. Graphics (TOG) 28, 4, 106.
    28. Piñero, D. P. 2013. Technologies for anatomical and geometric characterization of the corneal structure and anterior segment: a review. In Seminars in Ophthalmology, no. 0, 1–10.
    29. Rio-Cristobal, A., and Martin, R. 2014. Corneal assessment technologies: Current status. Survey of Ophthalmology.
    30. Ruhland, K., Andrist, S., Badler, J., Peters, C., Badler, N., Gleicher, M., Mutlu, B., and McDonnell, R. 2014. Look me in the eyes: A survey of eye and gaze animation for virtual agents and artificial systems. In Eurographics State of the Art Reports, 69–91.
    31. Sagar, M. A., Bullivant, D., Mallinson, G. D., and Hunter, P. J. 1994. A virtual environment and model of the eye for surgical simulation. In Proceedings of Computer Graphics and Interactive Techniques, 205–212.
    32. Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. 2006. A comparison and evaluation of multi-view stereo reconstruction algorithms. In IEEE CVPR, vol. 1, 519–528.
    33. Smolek, M. K., and Klyce, S. D. 2003. Zernike polynomial fitting fails to represent all visually significant corneal aberrations. Investigative ophthalmology & visual science 44, 11, 4676–4681.
    34. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proc. SGP, 175–184.
    35. Vivino, M., Chintalagiri, S., Trus, B., and Datiles, M. 1993. Development of a scheimpflug slit lamp camera system for quantitative densitometric analysis. Eye 7, 6, 791–798.Cross Ref


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org