“Computational Homogenization for Inverse Design of Surface-based Inflatables”
Conference:
Type(s):
Title:
- Computational Homogenization for Inverse Design of Surface-based Inflatables
Presenter(s)/Author(s):
Abstract:
Surface-based inflatables are composed of two sheet materials joined along selected fusing curves, gaining stiffness when inflated to deploy into bending-active shells. We present a computational framework employing numerical homogenization and physics-based simulation for optimizing over arbitrary fusing patterns and designing structures that approximate a wide range of doubly curved surfaces.
References:
[1]
Hillel Aharoni, Yu Xia, Xinyue Zhang, and Shu Kamien, Randall D. and Yang. 2018. Universal inverse design of surfaces with thin nematic elastomer sheets. Proceedings of the National Academy of Sciences of the United States of America 115, 28 (2018).
[2]
Gr?goire Allaire, Perle Geoffroy-Donders, and Olivier Pantz. 2019. Topology optimization of modulated and oriented periodic microstructures by the homogenization method. Computers & Mathematics with Applications 78, 7 (2019), 2197–2229. Simulation for Additive Manufacturing.
[3]
Ignacio Andrade-Silva and Joel Marthelot. 2023. Fabric-Based Star Soft Robotic Gripper. Advanced Intelligent Systems 5, 8 (2023), 2200435.
[4]
Artelys. 2019. Artelys Knitro – Nonlinear optimization solver. https://www.artelys.com/en/optimization-tools/knitro
[5]
Robert Baines, Sree Kalyan Patiballa, Benjamin Gorissen, Katia Bertoldi, and Rebecca Kramer-Bottiglio. 2023. Programming 3D Curves with Discretely Constrained Cylindrical Inflatables. Advanced Materials 35, 26 (2023), 2300535.
[6]
Quentin Becker, Seiichi Suzuki, Yingying Ren, Davide Pellis, Julian Panetta, and Mark Pauly. 2023. C-Shells: Deployable Gridshells with Curved Beams. ACM Trans. Graph. 42, 6, Article 173 (dec 2023), 17 pages.
[7]
Camille Boutemy, Arthur Leb?e, M?lina Skouras, Marc Mimram, and Olivier Baverel. 2023. Reusable Inflatable Formwork for Complex Shape Concrete Shells. In Towards Radical Regeneration. Springer International Publishing, Cham, 198–210.
[8]
Antoine Chan-Lock, Jes?s P?rez, and Miguel A Otaduy. 2022. High-Order Elasticity Interpolants for Microstructure Simulation. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 63–74.
[9]
Desai Chen, David IW Levin, Shinjiro Sueda, and Wojciech Matusik. 2015. Data-driven finite elements for geometry and material design. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–10.
[10]
Desai Chen, M?lina Skouras, Bo Zhu, and Wojciech Matusik. 2018. Computational discovery of extremal microstructure families. Science advances 4, 1 (2018).
[11]
Tian Chen, Julian Panetta, Max Schnaubelt, and Mark Pauly. 2021. Bistable auxetic surface structures. ACM Transactions on Graphics 40, 4 (Aug. 2021), 1–9.
[12]
Manfredo P Do Carmo. 2016. Differential geometry of curves and surfaces: revised and updated second edition. Courier Dover Publications.
[13]
Xingyi Du, Danny M. Kaufman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Noam Aigerman, and Tao Ju. 2021. Optimizing global injectivity for constrained parameterization. ACM Trans. Graph. 40, 6, Article 260 (2021).
[14]
Tian Gao, Emmanuel Si?fert, Antonio DeSimone, and Beno?t Roman. 2020. Shape Programming by Modulating Actuation over Hierarchical Length Scales. Advanced Materials 32, 47 (2020), 2004515.
[15]
Christophe Geuzaine and Jean-Franccois Remacle. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Internat. J. Numer. Methods Engrg. 79, 11 (2009), 1309–1331. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579
[16]
A. Sydney Gladman, Elisabetta A Matsumoto, Ralph G Nuzzo, Lakshminarayanan Mahadevan, and Jennifer A Lewis. 2016. Biomimetic 4D printing. Nature materials 15, 4 (2016), 413–418.
[17]
Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature. ACM Trans. Graph. 36, 4, Article 64 (7 2017), 12 pages.
[18]
Jen-Hsuan Hsiao, Jen-Yuan Chang, and Chao-Min Cheng. 2019. Soft medical robotics: clinical and biomedical applications, challenges, and future directions. Advanced Robotics 33, 21 (2019), 1099–1111.
[19]
Lishuai Jin, Antonio Elia Forte, Bolei Deng, Ahmad Rafsanjani, and Katia Bertoldi. 2020. Kirigami-inspired inflatables with programmable shapes. Advanced Materials 32, 33 (2020).
[20]
Trevor J. Jones, Thomas Dupuis, Etienne Jambon-Puillet, Joel Marthelot, and P.-T. Brun. 2023. Soft Deployable Structures via Core-Shell Inflatables. Phys. Rev. Lett. 130 (Mar 2023), 128201. Issue 12.
[21]
David Jourdan, Pierre-Alexandre Hugron, Camille Schreck, Jon?s Mart?nez, and Sylvain Lefebvre. 2023. Shrink & Morph: 3D-printed self-shaping shells actuated by a shape memory effect. ACM Trans. Graph. 42, 6, Article 187 (2023).
[22]
David Jourdan, M?lina Skouras, Etienne Vouga, and Adrien Bousseau. 2020. Printing-on-fabric meta-material for self-shaping architectural models. Advances in Architectural Geometry (2020).
[23]
David Jourdan, M?lina Skouras, Etienne Vouga, and Adrien Bousseau. 2022. Computational Design of Self-Actuated Surfaces by Printing Plastic Ribbons on Stretched Fabric. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 493–506.
[24]
Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Transactions on graphics (TOG) 28, 3 (2009), 1–8.
[25]
Felix Kn?ppel, Keenan Crane, Ulrich Pinkall, and Peter Schr?der. 2015. Stripe Patterns on Surfaces. ACM Trans. Graph. 34 (2015). Issue 4.
[26]
Mina Konakovic-Lukovic, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid Deployment of Curved Surfaces via Programmable Auxetics. Acm Transactions On Graphics 37, 4 (2018), 106.
[27]
Bruno L?vy, Sylvain Petitjean, Nicolas Ray, and J?rome Maillot. 2002. Least Squares Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3 (July 2002), 362–371.
[28]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM Trans. Graph. (SIGGRAPH) 39, 4, Article 49 (2020).
[29]
Yue Li, Juan Montes, Bernhard Thomaszewski, and Stelian Coros. 2022. Programmable Digital Weaves. IEEE Robotics and Automation Letters 7, 2 (2022), 2891–2896.
[30]
Yiyue Luo, Kui Wu, Andrew Spielberg, Michael Foshey, Daniela Rus, Tom?s Palacios, and Wojciech Matusik. 2022. Digital Fabrication of Pneumatic Actuators with Integrated Sensing by Machine Knitting. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. Article 175.
[31]
Juan Montes Maestre, Ronan Hinchet, Stelian Coros, and Bernhard Thomaszewski. 2023. ToRoS: A Topology Optimization Approach for Designing Robotic Skins. ACM Trans. Graph. 42, 6, Article 194 (2023).
[32]
Jon?s Mart?nez, M?lina Skouras, Christian Schumacher, Samuel Hornus, Sylvain Lefebvre, and Bernhard Thomaszewski. 2019. Star-Shaped Metrics for Mechanical Metamaterial Design. ACM Trans. Graph. 38, 4, Article 82 (2019).
[33]
David Melancon, Benjamin Gorissen, Carlos J. Garc?a-Mora, Chuck Hoberman, and Katia Bertoldi. 2021. Multistable inflatable origami structures at the metre scale. Nature 592, 7855 (April 2021), 545–550.
[34]
Eivind Lyche Melv?r and Martin Reimers. 2012. Geodesic polar coordinates on polygonal meshes. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 2423–2435.
[35]
Christian Miehe, J?rg Schr?der, and Martin Becker. 2002. Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro-and macro-scales of periodic composites and their interaction. Computer Methods in Applied Mechanics and Engineering 191, 44 (2002), 4971–5005.
[36]
Juan Sebastian Montes Maestre, Yinwei Du, Ronan Hinchet, Stelian Coros, and Bernhard Thomaszewski. 2023. Differentiable Stripe Patterns for Inverse Design of Structured Surfaces. ACM Transactions on Graphics 42, 4 (2023). Cited by: 0; All Open Access, Green Open Access.
[37]
Praveen Babu Nakshatrala, Daniel A Tortorelli, and KB Nakshatrala. 2013. Nonlinear structural design using multiscale topology optimization. Part I: Static formulation. Computer Methods in Applied Mechanics and Engineering 261 (2013), 167–176.
[38]
Ryuma Niiyama, Hiroki Sato, Kazzmasa Tsujimura, Koya Narumi, Young Ah Seong, Ryosuke Yamamura, Yasuaki Kakehi, and Yoshihiro Kawahara. 2020. Poimo: Portable and inflatable mobility devices customizable for personal physical characteristics. UIST 2020 – Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (2020), 912–923.
[39]
Kate Oliver, Annela Seddon, and Richard S. Trask. 2016. Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. Journal of Materials Science 51, 24 (2016), 10663–10689.
[40]
Jifei Ou, M?lina Skouras, Nikolaos Vlavianos, Felix Heibeck, Chin-Yi Cheng, Jannik Peters, and Hiroshi Ishii. 2016. aeroMorph-heat-sealing inflatable shape-change materials for interaction design. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. 121–132.
[41]
Julian Panetta, Florin Isvoranu, Tian Chen, Emmanuel Si?fert, Beno?t Roman, and Mark Pauly. 2021. Computational inverse design of surface-based inflatables. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–14.
[42]
Julian Panetta, Mina Konakovi?-Lukovi?, Florin Isvoranu, Etienne Bouleau, and Mark Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (2019), 15 pages.
[43]
Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case Stress Relief for Microstructures. ACM Trans. Graph. 36, 4, Article 122 (July 2017), 16 pages.
[44]
Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic Textures for Additive Fabrication. ACM Trans. Graph. 34, 4, Article 135 (July 2015), 135:1–135:12 pages.
[45]
Daniele Panozzo, E Puppo, and L Rocca. 2010. Efficient multi-scale curvature and crease estimation. Proceedings of Computer Graphics, Computer Vision and Mathematics 1, 6 (2010).
[46]
Jes?s P?rez, Miguel A Otaduy, and Bernhard Thomaszewski. 2017. Computational design and automated fabrication of kirchhoff-plateau surfaces. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–12.
[47]
Stefan Pillwein, Kurt Leimer, Michael Birsak, and Przemyslaw Musialski. 2020. On Elastic Geodesic Grids and Their Planar to Spatial Deployment. ACM Trans. Graph. 39, 4, Article 125 (July 2020), 12 pages.
[48]
Nicolas Ray, Wan Chiu Li, Bruno L?vy, Alla Sheffer, and Pierre Alliez. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460–1485.
[49]
Yingying Ren, Uday Kusupati, Julian Panetta, Florin Isvoranu, Davide Pellis, Tian Chen, and Mark Pauly. 2022. Umbrella meshes: elastic mechanisms for freeform shape deployment. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–15.
[50]
E. Rivas-Adrover. 2015. Deployable Structures. Laurence King Publishing.
[51]
Emmanuel Rodriguez, Georges-Pierre Bonneau, Stefanie Hahmann, and M?lina Skouras. 2022. Computational Design of Laser-Cut Bending-Active Structures. Computer-Aided Design 151 (2022), 103335.
[52]
Mark Schenk, Andrew D. Viquerat, Keith A. Seffen, and Simon D. Guest. 2014. Review of inflatable booms for deployable space structures: Packing and rigidization. Journal of Spacecraft and Rockets 51, 3 (2014), 762–778.
[53]
Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to Control Elasticity in 3D Printing. ACM Trans. Graph. 34, 4, Article 136 (July 2015), 136:1–136:13 pages.
[54]
Christian Schumacher, Steve Marschner, Markus Gross, and Bernhard Thomaszewski. 2018. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. 37, 4, Article 148 (jul 2018).
[55]
Emmanuel Si?fert, Etienne Reyssat, Jos? Bico, and Beno?t Roman. 2020. Programming stiff inflatable shells from planar patterned fabrics. Soft Matter 16 (2020), 7898–7903. Issue 34.
[56]
M?lina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing inflatable structures. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–10.
[57]
Georg Sperl, Rahul Narain, and Chris Wojtan. 2020. Homogenized Yarn-Level Cloth. ACM Transactions on Graphics (TOG) 39, 4 (2020).
[58]
D. J. Steigmann. 1990. Tension-Field Theory. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 429, 1876 (1990), 141–173. http://www.jstor.org/stable/51778
[59]
Hang Su, Xu Hou, Xin Zhang, Wen Qi, Shuting Cai, Xiaoming Xiong, and Jing Guo. 2022. Pneumatic Soft Robots: Challenges and Benefits. Actuators 11, 3 (2022).
[60]
Masato Tanaka, S. Macrae Montgomery, Liang Yue, Yaochi Wei, Yuyang Song, Tsuyoshi Nomura, and H. Jerry Qi. 2023. Turing pattern-based design and fabrication of inflatable shape-morphing structures. Science Advances 9, 6 (2023).
[61]
Pengbin Tang, Stelian Coros, and Bernhard Thomaszewski. 2023. Beyond Chainmail: Computational Modeling of Discrete Interlocking Materials. ACM Trans. Graph. 42, 4, Article 84 (jul 2023), 12 pages.
[62]
Yichao Tang, Mingtong Li, Tianlu Wang, Xiaoguang Dong, Wenqi Hu, and Metin Sitti. 2022. Wireless Miniature Magnetic Phase-Change Soft Actuators. Advanced Materials 34, 40 (2022), 2204185.
[63]
Davi Colli Tozoni, J?r?mie Dumas, Zhongshi Jiang, Julian Panetta, Daniele Panozzo, and Denis Zorin. 2020. A low-parametric rhombic microstructure family for irregular lattices. ACM Transactions on Graphics (TOG) 39, 4 (2020), 101–1.
[64]
Yue Wang, Yingying Ren, and Tian Chen. 2022. From kirigami to hydrogels: a tutorial on designing conformally transformable surfaces. Journal of Applied Mechanics (2022).
[65]
Xudong Yang, Zongzheng Wang, Bojian Zhang, Tianyu Chen, Changhong Linghu, Kunlin Wu, Guohui Wang, Hailu Wang, and Yifan Wang. 2023. Self-Sensing Robotic Structures from Architectured Particle Assemblies. Advanced Intelligent Systems 5, 1 (2023).
[66]
Yiwei Zhang, Tomoya Tendo, and Tomohiro Tachi. 2023b. Modular design of multistable pneumatic structures from a flat pattern of air pouches. Journal of the International Association for Shell and Spatial Structures 64, 4 (2023), 298–305.
[67]
Zhan Zhang, Christopher Brandt, Jean Jouve, Yue Wang, Tian Chen, Mark Pauly, and Julian Panetta. 2023a. Computational Design of Flexible Planar Microstructures. ACM Trans. Graph. 42, 6, Article 185 (2023).