“ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models” by Kahng, Andrews, Kalro and Chau
Conference:
Type(s):
Title:
- ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
Session/Category Title: IEEE TVCG Session on Advances in Data VisualizationIEEE TVCG Session on Advances in Data Visualization
Presenter(s)/Author(s):
Abstract:
While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ActiVis, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance- and subset-level. ActiVis has been deployed on Facebook’s machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ActiVis may work with different models.
References:
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, ? J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, ? Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.
[2] A. Abdulkader, A. Lakshmiratan, and J. Zhang. Introducing DeepText: Facebook?s text understanding engine. https://code.facebook.com/posts/181565595577955/ introducing-deeptext-facebook-s-text-understanding-engine/, 2016. Accessed: 2017-06-26.
[3] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh. ModelTracker: Redesigning performance analysis tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI), pages 337?346. ACM, 2015.
[4] P. Andrews, A. Kalro, H. Mehanna, and A. Sidorov. Productionizing machine learning pipelines at scale. In ML Systems Workshop at the 33rd International Conference on Machine Learning (ICML), 2016.
[5] L. Backstrom. Serving a billion personalized news feeds. In 12th International Workshop on Mining and Learning with Graphs at the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016. Available at https://youtu.be/Xpx5RYNTQvg.
[6] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: A CPU and GPU math expression compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy), 2010.
[7] D. Britz. Implementing a CNN for text classification in TensorFlow. http://www.wildml.com/2015/12/ implementing-a-cnn-for-text-classification-in-tensorflow, 2015. Accessed: 2017-06-26.
[8] M. Brooks, S. Amershi, B. Lee, S. M. Drucker, A. Kapoor, and P. Simard. FeatureInsight: Visual support for error-driven feature ideation in text classification. In IEEE Conference on Visual Analytics Science and Technology (VAST), pages 105?112. IEEE, 2015.
[9] J. Choo, H. Lee, J. Kihm, and H. Park. iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction. In IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 27?34. IEEE, 2010.
[10] S. Chung, C. Park, S. Suh, K. Kang, J. Choo, and B. C. Kwon. ReVACNN: Steering convolutional neural network via real-time visual analytics. In Future of Interactive Learning Machines Workshop at the 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016.
[11] P. Covington, J. Adams, and E. Sargin. Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 191?198. ACM, 2016.
[12] J. Dunn. Introducing FBLearner Flow: Facebook?s AI backbone. https://code.facebook.com/posts/1072626246134461/ introducing-fblearner-flow-facebook-s-ai-backbone/, 2016. Accessed: 2017-06-26.
[13] M. Gleicher. Explainers: Expert explorations with crafted projections. IEEE Transactions on Visualization and Computer Graphics, 19(12):2042? 2051, 2013.
[14] A. W. Harley. An interactive node-link visualization of convolutional neural networks. In Proceedings of the 11th International Symposium on Visual Computing, pages 867?877, 2015.
[15] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, and J. Q. Candela. Practical lessons from predicting clicks on ads at Facebook. In Proceedings of the 8th International Workshop on Data Mining for Online Advertising, pages 1?9. ACM, 2014.
[16] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.
[17] M. Kahng, D. Fang, and D. H. P. Chau. Visual exploration of machine learning results using data cube analysis. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics at the ACM SIGMOD International Conference on Management of Data. ACM, 2016.
[18] A. Karpathy. Convnetjs. http://cs.stanford.edu/people/ karpathy/convnetjs/, 2016. Accessed: 2017-06-26.
[19] Y. Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.
[20] J. Krause, A. Perer, and E. Bertini. Infuse: Interactive feature selection for predictive modeling of high dimensional data. IEEE Transactions on Visualization and Computer Graphics, 20(12):1614?1623, 2014.
[21] J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual inspection of black-box machine learning models. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pages 5686?5697. ACM, 2016.
[22] J. Krause, A. Perer, and H. Stavropoulos. Supporting iterative cohort construction with visual temporal queries. IEEE Transactions on Visualization and Computer Graphics, 22(1):91?100, 2016.
[23] T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf. Principles of explanatory debugging to personalize interactive machine learning. In Proceedings of the 20th International Conference on Intelligent User Interfaces (IUI), pages 126?137. ACM, 2015.
[24] T. Kulesza, S. Stumpf, W.-K. Wong, M. M. Burnett, S. Perona, A. Ko, and I. Oberst. Why-oriented end-user debugging of naive Bayes text classification. ACM Transactions on Interactive Intelligent Systems (TiiS), 1(1):2, 2011.
[25] X. Li and D. Roth. Learning question classifiers. In Proceedings of the 19th International Conference on Computational Linguistics, pages 1?7. Association for Computational Linguistics (ACL), 2002.
[26] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of deep convolutional neural networks. IEEE Transactions on Visualization and Computer Graphics, 23(1):91?100, 2017.
[27] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9(Nov):2579?2605, 2008.
[28] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A. M. Hrafnkelsson, T. Boulos, and J. Kubica. Ad click prediction: A view from the trenches. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1222?1230. ACM, 2013.
[29] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J. Landay. Gestalt: Integrated support for implementation and analysis in machine learning. In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology (UIST), pages 37?46. ACM, 2010.
[30] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison. Investigating statistical machine learning as a tool for software development. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 667?676. ACM, 2008.
[31] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea. Visualizing the hidden activity of artificial neural networks. IEEE Transactions on Visualization and Computer Graphics, 23(1):101?110, 2017.
[32] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares: Supporting interactive performance analysis for multiclass classifiers. IEEE Transactions on Visualization and Computer Graphics, 23(1):61?70, 2017.
[33] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should I trust you?: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1135?1144. ACM, 2016.
[34] D. Smilkov, S. Carter, D. Sculley, F. B. Viegas, and M. Wattenberg. Directmanipulation visualization of deep networks. In Workshop on Visualization for Deep Learning at the 33rd International Conference on Machine Learning (ICML), 2016.
[35] D. Smilkov, N. Thorat, C. Nicholson, E. Reif, F. B. Viegas, and M. Watten- ? berg. Embedding Projector: Interactive visualization and interpretation of embeddings. In Workshop on Interpretable Machine Learning in Complex Systems at the 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016.
[36] F.-Y. Tzeng and K.-L. Ma. Opening the black box: Data driven visualization of neural networks. In IEEE Visualization, pages 383?390. IEEE, 2005.
[37] S. Van Den Elzen and J. J. Van Wijk. BaobabView: Interactive construction and analysis of decision trees. In IEEE Conference on Visual Analytics Science and Technology (VAST), pages 151?160. IEEE, 2011.
[38] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks through deep visualization. In Workshop on Visualization for Deep Learning at the 33rd International Conference on Machine Learning (ICML), 2016.