“Computational design of metallophone contact sounds” by Bharaj, Levin, Tompkin, Fei, Pfister, et al. …
Conference:
Type(s):
Title:
- Computational design of metallophone contact sounds
Session/Category Title: Specialized Design
Presenter(s)/Author(s):
Abstract:
Metallophones such as glockenspiels produce sounds in response to contact. Building these instruments is a complicated process, limiting their shapes to well-understood designs such as bars. We automatically optimize the shape of arbitrary 2D and 3D objects through deformation and perforation to produce sounds when struck which match user-supplied frequency and amplitude spectra. This optimization requires navigating a complex energy landscape, for which we develop Latin Complement Sampling to both speed up finding minima and provide probabilistic bounds on landscape exploration. Our method produces instruments which perform similarly to those that have been professionally-manufactured, while also expanding the scope of shape and sound that can be realized, e.g., single object chords. Furthermore, we can optimize sound spectra to create overtones and to dampen specific frequencies. Thus our technique allows even novices to design metallophones with unique sound and appearance.
References:
1. Angell, T., Jiang, X., and Kleinman, R. 1997. A distributed source method for inverse acoustic scattering. Inverse Problems 13, 2, 531.
2. Arthur, D., and Vassilvitskii, S. 2007. k-means++: The advantages of careful seeding. In Proceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms, 1027–1035.
3. Bängtsson, E., Noreland, D., and Berggren, M. 2003. Shape optimization of an acoustic horn. Computer methods in applied mechanics and engineering 192, 11, 1533–1571.
4. Barbieri, R., and Barbieri, N. 2006. Finite element acoustic simulation based shape optimization of a muffler. Applied Acoustics 67, 4, 346–357.
5. Bardenet, R., and Kégl, B. 2010. Surrogating the surrogate: accelerating gaussian-process-based global optimization with a mixture cross-entropy algorithm. In 27th International Conference on Machine Learning (ICML 2010), Omnipress, 55–62.
6. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3 (July).
7. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (July), 63:1–63:10.
8. Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. ACM Trans. on Graphics (SIGGRAPH 2012) 31, 4 (July), 118:1–118:10.
9. Bishop, C. M., et al. 2006. Pattern recognition and machine learning, vol. 1. springer New York.
10. Branke, J., Deb, K., Miettinen, K., and Slowinski, R. 2008. Multiobjective Optimization: Interactive and Evolutionary Approaches. LNCS sublibrary: Theoretical computer science and general issues. Springer.
11. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic shells: a practical nonlinear sound model for near-rigid thin shells. ACM Transactions on Graphics (TOG) 28, 5, 119.
12. Chaigne, A., and Doutaut, V. 1997. Numerical simulations of xylophones. i. time-domain modeling of the vibrating bars. The Journal of the Acoustical Society of America 101, 1, 539–557.
13. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2fab: A reducer-tuner model for translating specifications to 3d prints. ACM Trans. Graph. 32, 4.
14. Choi, K. K., and Kim, N.-H. 2006. Structural sensitivity analysis and optimization 1: linear systems. Springer Science & Business Media.
15. Cook, R. D., et al. 2007. Concepts and applications of finite element analysis. Wiley.
16. De Poli, G., Piccialli, A., and Roads, C., Eds. 1991. Representations of Musical Signals. MIT Press, Cambridge, MA, USA.
17. Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39, 1, 1–38.
18. Diegel, O., 2013. 3d printed alto saxophone.
19. Dokmanić, I., Parhizkar, R., Walther, A., Lu, Y. M., and Vetterli, M. 2013. Acoustic echoes reveal room shape. Proceedings of the National Academy of Sciences 110, 30, 12186–12191.
20. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (July), 62:1–62:10.
21. Dühring, M. B., Jensen, J. S., and Sigmund, O. 2008. Acoustic design by topology optimization. Journal of sound and vibration 317, 3, 557–575.
22. Essl, G., and Cook, P. R. 1999. Banded waveguides: Towards physical modeling of bowed bar percussion instruments. In Proceedings of the International Computer Music Conference (ICMC), 321–324.
23. Feijóo, G. R., Oberai, A. A., and Pinsky, P. M. 2004. An application of shape optimization in the solution of inverse acoustic scattering problems. Inverse problems 20, 1, 199.
24. Fontana, F., and Rocchesso, D. 1998. Physical modeling of membranes for percussion instruments. Acta Acustica united with Acustica 84, 3, 529–542.
25. Gordon, C., Webb, D., and Wolpert, S. 1992. Isospectral plane domains and surfaces via riemannian orbifolds. Inventiones mathematicae 110, 1, 1–22.
26. Gordon, C., Webb, D. L., and Wolpert, S. 1992. One cannot hear the shape of a drum. Bulletin of the American Mathematical Society 27, 1, 134–138.
27. Hafner, C., Musialski, P., Auzinger, T., Wimmer, M., and Kobbelt, L. 2015. Optimization of natural frequencies for fabrication-aware shape modeling. In ACM SIGGRAPH Posters, ACM, New York, NY, USA, 82:1–82:1.
28. Hansen, N., Muller, S., and Koumoutsakos, P. 2003. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation 11, 1, 1–18.
29. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. on Graphics (SIGGRAPH 2010) 29, 4 (July), 61:1–61:10.
30. Ishiguro, Y., and Poupyrev, I. 2014. 3d printed interactive speakers. ACM, CHI 2014, 1733–1742.
31. James, D. L., Barbič, J., and Pai, D. K. 2006. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics (TOG) 25, 3, 987–995.
32. Kac, M. 1966. Can one hear the shape of a drum? American Mathematical Monthly, 1–23.
33. Kirkpatrick, S., Vecchi, M. P., et al. 1983. Optimization by simmulated annealing. science 220, 4598, 671–680.
34. Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: Fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. 26, 3 (July).
35. Lee, H.-P., and Lin, M. C. 2012. Fast optimization-based elasticity parameter estimation using reduced models. The Visual Computer 28, 6–8, 553–562.
36. Li, S., Huang, J., de Goes, F., Jin, X., Bao, H., and Desbrun, M. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Trans. Graph. 33, 4 (July).
37. Lloyd, D. B., Raghuvanshi, N., and Govindaraju, N. K. 2011. Sound synthesis for impact sounds in video games. In Symposium on Interactive 3D Graphics and Games, ACM, PAGE–7.
38. Marburg, S. 2002. Developments in structural-acoustic optimization for passive noise control. Archives of computational methods in engineering 9, 4, 291–370.
39. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graphics 28, 5 (Dec.).
40. McKay, M., Beckman, R., and Conover, W. 2000. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 1.
41. Nagaraj, K. S. 2014. Stochastically constrained simulation optimization on mixed-integer spaces.
42. O’Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. SCA ‘2002, 175–181.
43. Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum 30, 2, 503–511.
44. Pettersson, T. 2008. Global optimization methods for estimation of descriptive models.
45. Piegl, L., and Tiller, W. 1997. The NURBS Book (2Nd Ed.). Springer-Verlag New York, Inc., New York, NY, USA.
46. Raghuvanshi, N., and Lin, M. C. 2006. Interactive sound synthesis for large scale environments. In Proceedings of the 2006 symposium on Interactive 3D graphics and games, 101–108.
47. Ren, Z., Yeh, H., and Lin, M. C. 2013. Example-guided physically based modal sound synthesis. ACM Trans. Graph. 32, 1 (Feb.).
48. Shabana, A. A. 1995. Theory of Vibration: An Introduction. Mechanical Engineering Series. Springer.
49. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Computer Graphics Forum 31, 2pt4, 835–844.
50. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4 (July), 82:1–82:10.
51. Snoek, J., Larochelle, H., and Adams, R. P. 2012. Practical bayesian optimization of machine learning algorithms. In Neural Information Processing Systems.
52. Umetani, N., Mitani, J., and Igarashi, T. 2010. Designing custom-made metallophone with concurrent eigenanalysis. In Proceedings of the Conference on New Interfaces for Musical Expression (NIME), 26–30.
53. van den Doel, K., and Pai, D. K. 1998. The sounds of physical shapes. Presence: Teleoperators and Virtual Environments 7, 4.
54. Wadbro, E., and Berggren, M. 2006. Topology optimization of an acoustic horn. Computer methods in applied mechanics and engineering 196, 1, 420–436.
55. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Trans. Graph. 28, 3 (July), 60:1–60:8.
56. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. on Graphics (SIGGRAPH 2009) 28, 3 (July), 32:1–32:6.
57. Wright, S., and Nocedal, J. 1999. Numerical optimization, vol. 2. Springer New York.
58. Xu, H., Li, Y., Chen, Y., and Barbič, J. 2015. Interactive material design using model reduction. ACM Trans. Graph. 34, 2 (Mar.).
59. Yamasaki, S., Nishiwaki, S., Yamada, T., Izui, K., and Yoshimura, M. 2010. A structural optimization method based on the level set method using a new geometry-based re-initialization scheme. International journal for numerical methods in engineering 83, 12, 1580–1624.
60. Yoo, H. H., Cho, J. E., and Chung, J. 2006. Modal analysis and shape optimization of rotating cantilever beams. Journal of Sound and vibration 290, 1, 223–241.
61. Yu, Y., Jang, I. G., Kim, I. K., and Kwak, B. M. 2010. Nodal line optimization and its application to violin top plate design. Journal of Sound and Vibration 329, 22, 4785–4796.
62. Yu, Y., Jang, I. G., and Kwak, B. M. 2013. Topology optimization for a frequency response and its application to a violin bridge. Structural and Multidisciplinary Optimization 48, 3, 627–636.
63. Zelditch, S. 2000. Spectral determination of analytic bi-axisymmetric plane domains. Geometric & Functional Analysis GAFA 10, 3, 628–677.
64. Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Transactions on Graphics (TOG) 29, 4, 69.
65. Zheng, C., and James, D. L. 2011. Toward high-quality modal contact sound. ACM Transactions on Graphics (TOG) 30, 4, 38.
66. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. 31, 6 (Nov.), 127:1–127:10.


