“Automatic noise modeling for ghost-free HDR reconstruction”
Conference:
Type(s):
Title:
- Automatic noise modeling for ghost-free HDR reconstruction
Session/Category Title: HDR & IBR
Presenter(s)/Author(s):
Abstract:
High dynamic range reconstruction of dynamic scenes requires careful handling of dynamic objects to prevent ghosting. However, in a recent review, Srikantha et al. [2012] conclude that “there is no single best method and the selection of an approach depends on the user’s goal”. We attempt to solve this problem with a novel approach that models the noise distribution of color values. We estimate the likelihood that a pair of colors in different images are observations of the same irradiance, and we use a Markov random field prior to reconstruct irradiance from pixels that are likely to correspond to the same static scene object. Dynamic content is handled by selecting a single low dynamic range source image and hand-held capture is supported through homography-based image alignment. Our noise-based reconstruction method achieves better ghost detection and removal than state-of-the-art methods for cluttered scenes with large object displacements. As such, our method is broadly applicable and helps move the field towards a single method for dynamic scene HDR reconstruction.
References:
1. Bay, H., Ess, A., Tuytelaars, T., and Gool, L. J. V. 2008. Speeded-up robust features (SURF). Computer Vision and Image Understanding 110, 3, 346–359.
2. Bogoni, L. 2000. Extending dynamic range of monochrome and color images through fusion. In Proc. ICPR, 3007–3016.
3. Boykov, Y., and Kolmogorov, V. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE TPAMI 26, 9, 1124–1137.
4. Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE TPAMI 23, 11.
5. Burt, P. J., and Kolczynski, R. J. 1993. Enhanced image capture through fusion. In Proc. ICCV, 173–182.
6. Drago, F., Myszkowski, K., Annen, T., and Chiba, N. 2003. Adaptive logarithmic mapping for displaying high contrast scenes. CGF 22, 3, 419–426.
7. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM TOG 21, 3.
8. Fischler, M. A., and Bolles, R. C. 1981. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 6, 381–395.
9. Gallo, O., Gelfand, N., Chen, W.-C., Tico, M., and Pulli, K. 2009. Artifact-free high dynamic range imaging. In Proc. ICCP, 1–7.
10. Gallo, O., Tico, M., Manduchi, R., Gelfand, N., and Pulli, K. 2012. Metering for exposure stacks. CGF 31, 2.
11. Granados, M., Seidel, H.-P., and Lensch, H. P. A. 2008. Background estimation from non-time sequence images. In Proc. GI, 33–40.
12. Granados, M., Ajdin, B., Wand, M., Theobalt, C., Seidel, H.-P., and Lensch, H. P. A. 2010. Optimal HDR reconstruction with linear digital cameras. In Proc. CVPR, 215–222.
13. Grosch, T. 2006. Fast and robust high dynamic range image generation with camera and object movement. In Proc. VMV.
14. Heo, Y. S., Lee, K. M., Lee, S. U., Moon, Y., and Cha, J. 2010. Ghost-free high dynamic range imaging. In Proc. ACCV, vol. 4, 486–500.
15. Hu, J., Gallo, O., and Pulli, K. 2012. Exposure stacks of live scenes with hand-held cameras. In Proc. ECCV, 499–512.
16. Hubbard, W. M. 1970. The approximation of a Poisson distribution by a Gaussian distribution. Proc. IEEE 58, 9, 1374–1375.
17. Jacobs, K., Loscos, C., and Ward, G. 2008. Automatic high-dynamic range image generation for dynamic scenes. IEEE CGA 28, 2, 84–93.
18. Janesick, J. 2001. Scientific charge-coupled devices. SPIE Press.
19. Kang, S. B., Uyttendaele, M., Winder, S. A. J., and Szeliski, R. 2003. High dynamic range video. ACM TOG 22, 3, 319–325.
20. Khan, E. A., Akyüz, A. O., and Reinhard, E. 2006. Ghost removal in high dynamic range images. In Proc. ICIP.
21. Liu, C., Szeliski, R., Kang, S. B., Zitnick, C. L., and Freeman, W. T. 2008. Automatic estimation and removal of noise from a single image. IEEE TPAMI 30, 2, 299–314.
22. Mann, S., and Picard, R. 1995. Being ‘undigital’ with digital cameras: Extending dynamic range by combining differently exposed pictures. In Proc. IS&T, 422–428.
23. Menzel, N., and Guthe, M. 2007. Freehand HDR photography with motion compensation. In Proc. VMV, 127–134.
24. Min, T.-H., Park, R.-H., and Chang, S. 2009. Histogram based ghost removal in high dynamic range images. In Proc. ICME, 530–533.
25. Pece, F., and Kautz, J. 2010. Bitmap movement detection: HDR for dynamic scenes. In Proc. CVMP, 1–8.
26. Pedone, M., and Heikkilä, J. 2008. Constrain propagation for ghost removal in high dynamic range images. In Proc. VISAPP.
27. Raman, S., and Chaudhuri, S. 2010. Bottom-up segmentation for ghost-free reconstruction of a dynamic scene from multiexposure images. In Proc. ICVGIP, 56–63.
28. Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P. 2005. High dynamic range imaging: Acquisition, display and image-based lighting. Morgan Kaufmann publishers.
29. Robertson, M., Borman, S., and Stevenson, R. 2003. Estimation-theoretic approach to dynamic range improvement using multiple exposures. J. Elec. Imag. 12, 2, 219–228.
30. Sen, P., Kalantari, N. K., Yaesoubi, M., Darabi, S., Goldman, D., and Shechtman, E. 2012. Robust patch-based hdr reconstruction of dynamic scenes. ACM TOG 31, 6.
31. Sidibé, D., Puech, W., and Strauss, O. 2009. Ghost detection and removal in high dynamic range images. In Proc. EUSIPCO.
32. Silk, S., and Lang, J. 2012. Fast high dynamic range image deghosting for arbitrary scene motion. In Proc. GI, 85–92.
33. Simakov, D., Caspi, Y., Shechtman, E., and Irani, M. 2008. Summarizing visual data using bidirectional similarity. In Proc. CVPR.
34. Srikantha, A., and Sidibé, D. 2012. Ghost detection and removal for high dynamic range images: Recent advances. Sig. Proc.: Image Comm. 27, 6, 650–662.
35. Tocci, M. D., Kiser, C., Tocci, N., and Sen, P. 2011. A versatile hdr video production system. ACM TOG 30, 4, 41.
36. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proc. ICCV, 839–846.
37. Tomaszewska, A. M., and Markowski, M. 2010. Dynamic scenes HDRI acquisition. In Proc. ICIAR, vol. 2, 345–354.
38. Veksler, O., Boykov, Y., and Mehrani, P. 2010. Superpixels and supervoxels in an energy optimization framework. In Proc. ECCV, vol. 6315, 211–224.
39. Zhang, W., and Cham, W.-K. 2012. Gradient-directed multiexposure composition. IEEE TIP 21, 4, 2318–2323.
40. Zimmer, H., Bruhn, A., and Weickert, J. 2011. Freehand HDR imaging of moving scenes with simultaneous resolution enhancement. CGF 30, 2, 405–414.


