“General planar quadrilateral mesh design using conjugate direction field”
Conference:
Type(s):
Title:
- General planar quadrilateral mesh design using conjugate direction field
Session/Category Title: Quads and Friends
Presenter(s)/Author(s):
Abstract:
We present a novel method to approximate a freeform shape with a planar quadrilateral (PQ) mesh for modeling architectural glass structures. Our method is based on the study of conjugate direction fields (CDF) which allow the presence of ±κ/4(κ ε Z) singularities. Starting with a triangle discretization of a freeform shape, we first compute an as smooth as possible conjugate direction field satisfying the user’s directional and angular constraints, then apply mixed-integer quadrangulation and planarization techniques to generate a PQ mesh which approximates the input shape faithfully. We demonstrate that our method is effective and robust on various 3D models.
References:
1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Trans. Graph. (SIGGRAPH) 22, 485–493. Google ScholarDigital Library
2. Bobenko, A. I., and Suris, Y. B. 2008. Discrete Differential Geometry. American Mathematical Society.Google Scholar
3. Bobenko, A. I., and Tsarev, S. P., 2007. Curvature line parametrization from circle patterns. arXiv:0706.3221.Google Scholar
4. Boier-Martin, I., Rushmeier, H., and Jin, J. 2004. Parameterization of triangle meshes over quadrilateral domains. In Symp. Geom. Proc., 193–203. Google ScholarDigital Library
5. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. (SIGGRAPH) 28, 77:1–77:10. Google ScholarDigital Library
6. Bommes, D., Vossemer, T., and Kobbelt, L. 2010. Quadrangular Parameterization for Reverse Engineering. In Mathematical Methods for Curves and Surfaces. Springer Berlin/Heidelberg, 55–69. Google ScholarDigital Library
7. Chen, G., Esch, G., Wonka, P., Mueller, P., and Zhang, E. 2008. Interactive Procedural Street Modeling. ACM Trans. Graph. (SIGGRAPH) 27, 3, 103:1–103:10. Google ScholarDigital Library
8. Cohen-Steiner, D., and Morvan, J.-M. 2003. Restricted Delaunay Triangulations and Normal Cycle. In SoCG, 312–321. Google ScholarDigital Library
9. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial Connections on Discrete Surfaces. In Comp. Graph. Forum (Symp. Geom. Proc.), vol. 29, 1525–1533.Google ScholarCross Ref
10. Do Carmo, M. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.Google Scholar
11. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. 2006. Spectral surface quadrangulation. ACM Trans. Graph. (SIGGRAPH) 25, 1057–1066. Google ScholarDigital Library
12. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N. J., Pottmann, H., and Pauly, M. 2010. Paneling architectural freeform surfaces. ACM Trans. Graph. (SIGGRAPH) 29, 45:1–45:10. Google ScholarDigital Library
13. Fu, C.-W., Lai, C.-F., He, Y., and Cohen-Or, D. 2010. K-set tilable surfaces. ACM Trans. Graph. (SIGGRAPH) 29, 44:1–44:6. Google ScholarDigital Library
14. Glymph, J., Shelden, D., Ceccato, C., Mussel, J., and Schober, H. 2004. A parametric strategy for free-form glass structures using quadrilateral planar facets. Automation in Construction 13, 187–202.Google ScholarCross Ref
15. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In SIGGRAPH, 517–526. Google ScholarDigital Library
16. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. 2008. Spectral quadrangulation with orientation and alignment control. ACM Trans. Graph. 27, 147:1–147:9. Google ScholarDigital Library
17. Kälberer, F., Matthias, N., and Polthier, K. 2007. Quad-Cover – Surface Parameterization using Branched Coverings. Comp. Graph. Forum (Symp. Geom. Proc.) 26, 375–384.Google ScholarCross Ref
18. Liu, D. C., and Nocedal, J. 1989. On the Limited Memory Method for Large Scale Optimization. Mathematical Programming B 45, 503–528. Google ScholarDigital Library
19. Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and Wang, W. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. (SIGGRAPH) 25, 681–689. Google ScholarDigital Library
20. Nocedal, J., and Wright, S. J. 1999. Numerical Optimization. Springer.Google Scholar
21. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. (SIGGRAPH) 26, 55:1–55:10. Google ScholarDigital Library
22. Pottmann, H., and Wallner, J. 2008. The focal geometry of circular and conical meshes. Adv. Comp. Math 29, 249–268.Google ScholarCross Ref
23. Pottmann, H., Asperl, A., Hofer, M., and Kilian, A. 2007. Architectural Geometry. Bentley Institute Press.Google Scholar
24. Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., and Wang, W. 2007. Geometry of Multi-layer Freeform Structures for Architecture. ACM Trans. Graph. (SIGGRAPH) 26, 65:1–65:12. Google ScholarDigital Library
25. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 1460–1485. Google ScholarDigital Library
26. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. Nsymmetry direction field design. ACM Trans. Graph. 27, 10:1–10:13. Google ScholarDigital Library
27. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1:1–1:11. Google ScholarDigital Library
28. Sauer, R. 1970. Differenzengeometrie. Springer.Google Scholar
29. Schiftner, A., and Balzer, J. 2010. Statics-Sensitive Layout of Planar Quadrilateral Meshes. In Advances in Architectural Geometry.Google Scholar
30. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Symp. Geom. Proc., 201–210. Google ScholarDigital Library
31. Zadravec, M., Schiftner, A., and Wallner, J. 2010. Designing Quad-dominant Meshes with Planar Faces. Comp. Graph. Forum (Symp. Geom. Proc.) 29, 5, 1671–1679.Google ScholarCross Ref


