“Wide-Field-Of-View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors” by Dunn, Tippets, Torell, Kellnhofer, Akşit, et al. …
Conference:
Type(s):
Title:
- Wide-Field-Of-View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors
Session/Category Title: IEEE TVCG Session on Advances in Virtual and Augmented Reality
Presenter(s)/Author(s):
Abstract:
This talk presents a new wide field-of-view, gaze-tracked near-eye display for augmented reality applications. Experiments have demonstrated its potential benefits for near-eye see-through displays.
References:
[1] K. Aks¸it, J. Kautz, and D. Luebke. Slim near-eye display using pinholeaperture arrays. Applied optics, 54(11):3422–3427, 2015.
[2] K. W. Arthur. Effects of field of view on performance with head-mounteddisplays. PhD thesis, University of North Carolina at Chapel Hill, 2000.
[3] H. Benko, E. Ofek, F. Zheng, and A. D. Wilson. Fovear: Combiningan optically see-through near-eye display with projector-based spatialaugmented reality. In Proceedings of the 28th Annual ACM Symposiumon User Interface Software & Technology, pages 129–135. ACM, 2015.
[4] S. R. Bharadwaj and C. M. Schor. Acceleration characteristics of humanocular accommodation. Vision Research, 45(1):17–28, 2005.
[5] F. Campbell. The depth of field of the human eye. Optica Acta: International Journal of Optics, 4(4):157–164, 1957.
[6] F. Campbell and G. Westheimer. Dynamics of accommodation responsesof the human eye. J. Physiol., 151(2):285–295, 1960.
[7] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, andM. Ivkovic. Augmented reality technologies, systems and applications.Multimedia Tools and Applications, 51(1):341–377, 2011.
[8] N. A. Dodgson. Variation and extrema of human interpupillary distance.In Electronic imaging 2004, pages 36–46. International Society for Opticsand Photonics, 2004.
[9] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3dgraphics. ACM Transactions on Graphics (TOG), 31(6):164, 2012.
[10] G. Heron, W. Charman, and C. Schor. Dynamics of the accommodationresponse to abrupt changes in target vergence as a function of age. VisionResearch, 41(4):507 – 519, 2001.
[11] D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks. Vergence–accommodation conflicts hinder visual performance and cause visualfatigue. Journal of vision, 8(3):33–33, 2008.
[12] X. Hu and H. Hua. High-resolution optical see-through multi-focalplane head-mounted display using freeform optics. Optics express,22(11):13896–13903, 2014.
[13] H. Hua and B. Javidi. A 3d integral imaging optical see-through headmounted display. Optics express, 22(11):13484–13491, 2014.
[14] F.-C. Huang, D. Luebke, and G. Wetzstein. The light field stereoscope.ACM SIGGRAPH Emerging Technologies, page 24, 2015.
[15] P. V. Johnson, J. A. Parnell, J. Kim, M. S. Banks, G. D. Love, et al. Assessing visual discomfort using dynamic lens and monovision displays. In 3DImage Acquisition and Display: Technology, Perception and Applications,pages TT4A–1. Optical Society of America, 2016.
[16] P. V. Johnson, J. A. Parnell, J. Kim, C. D. Saunter, G. D. Love, and M. S.Banks. Dynamic lens and monovision 3d displays to improve viewercomfort. arXiv preprint arXiv:1512.09163, 2015.
[17] S. Kasthurirangan, A. S. Vilupuru, and A. Glasser. Amplitude dependentaccommodative dynamics in humans. Vision Research, 43(27):2945 –2956, 2003.
[18] H.-J. Kim, S.-K. Lee, M.-L. Piao, N. Kim, and J.-H. Park. Threedimensional holographic head mounted display using holographic optical element. In Consumer Electronics (ICCE), 2015 IEEE InternationalConference on, pages 132–133. IEEE, 2015.
[19] K. Kiyokawa. A wide field-of-view head mounted projective display usinghyperbolic half-silvered mirrors. In Proceedings of the 2007 6th IEEE andACM International Symposium on Mixed and Augmented Reality, pages1–4. IEEE Computer Society, 2007.
[20] K. Kiyokawa, M. Billinghurst, B. Campbell, and E. Woods. An occlusioncapable optical see-through head mount display for supporting co-locatedcollaboration. In Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality, page 133. IEEE Computer Society,2003.
[21] J. C. Kotulak and C. M. Schor. The accommodative response to subthreshold blur and to perceptual fading during the troxler phenomenon.Perception, 15(1):7–15, 1986.
[22] G. Kramida. Resolving the vergence-accommodation conflict in headmounted displays. IEEE Transactions on Visualization and ComputerGraphics, 22(7):1912–1931, 2016.
[23] E. Kruijff, J. E. Swan II, and S. Feiner. Perceptual issues in augmentedreality revisited. In ISMAR, volume 9, pages 3–12, 2010.
[24] D. Lanman and D. Luebke. Near-eye light field displays. ACM Transactions on Graphics (TOG), 32(6):220, 2013.
[25] S. Lee, X. Hu, and H. Hua. Effects of optical combiner and ipd change forconvergence on near-field depth perception in an optical see-through hmd.IEEE transactions on visualization and computer graphics, 22(5):1540–1554, 2016.
[26] G. Lippmann. Epreuves reversibles. photographies integrals. ComptesRendus Academie des Sciences, 146:446–451, 1908.
[27] S. Liu, D. Cheng, and H. Hua. An optical see-through head mounteddisplay with addressable focal planes. In Mixed and Augmented Reality,2008. ISMAR 2008. 7th IEEE/ACM International Symposium on, pages33–42. IEEE, 2008.
[28] A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, andH. Fuchs. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. In ACM SIGGRAPH 2014Emerging Technologies Booth 203. ACM, 2014.
[29] J. D. Mansell, S. Sinha, and R. L. Byer. Deformable mirror developmentat stanford university. In International Symposium on Optical Science andTechnology, pages 1–12. International Society for Optics and Photonics,2002.
[30] S. McKay, G. M. Mair, S. Mason, and K. Revie. Membrane-mirror-basedautostereoscopic display for tele-operation and teleprescence applications.In Electronic Imaging, pages 198–207. International Society for Opticsand Photonics, 2000.
[31] S. McKay, S. Mason, L. S. Mair, P. Waddell, and S. M. Fraser. Membranemirror-based display for viewing 2d and 3d images. In Electronic Imaging’99, pages 144–155. International Society for Optics and Photonics,1999.
[32] H. Nagahara, Y. Yagi, and M. Yachida. Super wide field of view headmounted display using catadioptrical optics. Presence, 15(5):588–598,2006.
[33] G. W. R. Konrad, E.A Cooper. Novel optical configurations for virtualreality: Evaluating user preference and performance with focus-tunableand monovision near-eye displays. Proceedings of the ACM Conferenceon Human Factors in Computing Systems (CHI’16), 2016.
[34] E. G. Rawson. Vibrating varifocal mirrors for 3-d imaging. IEEE Spectrum,6(9):37–43, 1969.[35] L. Ronchi and G. Molesini. Depth of focus in peripheral vision. Ophthalmic Res, 7(3):152–157, 1975.
[36] P. S., D. Shirachi, and S. L. Analysis of accommodative response timesusing histogram information. American Journal of Optometry & Archivesof American Academy of Optometry, 49(5):389–400, 1972.
[37] R. Seghir and S. Arscott. Extended pdms stiffness range for flexiblesystems. Sensors and Actuators A: Physical, 230:33–39, 2015.
[38] A. Sisodia, A. Riser, and J. R. Rogers. Design of an advanced helmetmounted display (ahmd). In Defense and Security, pages 304–315. International Society for Optics and Photonics, 2005.
[39] G. Spencer and M. Murty. General ray-tracing procedure. JOSA,52(6):672–676, 1962.
[40] B. Wang and K. J. Ciuffreda. Depth-of-focus of the human eye in the nearretinal periphery. Vision Research, 44(11):1115 – 1125, 2004.
[41] B. Wang and K. J. Ciuffreda. Depth-of-focus of the human eye: Theoryand clinical implications. Survey of Ophthalmology, 51(1):75 – 85, 2006.
[42] A. Werber and H. Zappe. Tunable pneumatic microoptics. Journal ofMicroelectromechanical Systems, 17(5):1218–1227, 2008.
[43] S. Yamazaki, M. Mochimaru, and T. Kanade. Simultaneous self-calibrationof a projector and a camera using structured light. In Proc. ProjectorCamera Systems, pages 67–74, 2011.