“Multiphase SPH simulation for interactive fluids and solids”
Conference:
Type(s):
Title:
- Multiphase SPH simulation for interactive fluids and solids
Session/Category Title: FLUIDS SIMULATION
Presenter(s)/Author(s):
Moderator(s):
Abstract:
This work extends existing multiphase-fluid SPH frameworks to cover solid phases, including deformable bodies and granular materials. In our extended multiphase SPH framework, the distribution and shapes of all phases, both fluids and solids, are uniformly represented by their volume fraction functions. The dynamics of the multiphase system is governed by conservation of mass and momentum within different phases. The behavior of individual phases and the interactions between them are represented by corresponding constitutive laws, which are functions of the volume fraction fields and the velocity fields. Our generalized multiphase SPH framework does not require separate equations for specific phases or tedious interface tracking. As the distribution, shape and motion of each phase is represented and resolved in the same way, the proposed approach is robust, efficient and easy to implement. Various simulation results are presented to demonstrate the capabilities of our new multiphase SPH framework, including deformable bodies, granular materials, interaction between multiple fluids and deformable solids, flow in porous media, and dissolution of deformable solids.
References:
1. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and Teschner, M. 2012. Versatile rigid-fluid coupling for incompressible sph. ACM Trans. Graph. 31, 4 (July), 62:1–62:8. Google ScholarDigital Library
2. Akinci, N., Cornelis, J., Akinci, G., and Teschner, M. 2013. Coupling elastic solids with sph fluids. Journal of Computer Animation and Virtual Worlds.Google ScholarCross Ref
3. Alduán, I., and Otaduy, M. A. 2011. Sph granular flow with friction and cohesion. Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 25–32. Google ScholarDigital Library
4. Bauer, E. 1996. Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations 36, 1, 13–26.Google ScholarCross Ref
5. Becker, M., and Teschner, M. 2007. Weakly compressible sph for free surface flows. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 209–217. Google ScholarDigital Library
6. Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated sph for deformable solids. Proceedings of the Fifth Eurographics Conference on Natural Phenomena, 27–34. Google ScholarDigital Library
7. Bell, N., Yu, Y., and Mucha, P. J. 2005. Particle-based simulation of granular materials. Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 77–86. Google ScholarDigital Library
8. Bender, J., and Koschier, D. 2015. Divergence-free smoothed particle hydrodynamics. SCA ’15, 147–155. Google ScholarDigital Library
9. Bui, H. H., Fukagawa, R., Sako, K., and Ohno, S. 2008. Lagrangian meshfree particles method (sph) for large deformation and failure flows of geomaterial using elasticcplastic soil constitutive model. International Journal for Numerical and Analytical Methods in Geomechanics 32, 12, 1537–1570.Google ScholarCross Ref
10. Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. 2009. A point-based method for animating elastoplastic solids. Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 133–138. Google ScholarDigital Library
11. Gray, J., Monaghan, J., and Swift, R. 2001. SPH elastic dynamics. Computer Methods in Applied Mechanics and Engineering 190, 49C50, 6641–6662.Google Scholar
12. Gudehus, G. 1996. A comprehensive constitutive equation for granular materials. Soils and Foundations 36, 1, 1–12.Google ScholarCross Ref
13. Hill, R. 1998. The Mathematical Theory of Plasticity. Oxford, Clarendon Press.Google Scholar
14. Ihmsen, M., Wahl, A., and Teschner, M. 2012. High-resolution simulation of granular material with sph. VRIPHYS, 53–60.Google Scholar
15. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M. 2014. Implicit incompressible sph. IEEE Transactions on Visualization and Computer Graphics 20, 3 (Mar.), 426–435. Google ScholarDigital Library
16. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. SPH Fluids in Computer Graphics. Eurographics 2014 – State of the Art Reports.Google Scholar
17. Jones, B., Ward, S., Jallepalli, A., Perenia, J., and Bargteil, A. W. 2014. Deformation embedding for point-based elastoplastic simulation. ACM Trans. Graph. 33, 2 (Apr.), 21:1–21:9. Google ScholarDigital Library
18. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified lagrangian approach to solid-fluid animation. Proceedings of the Second Eurographics / IEEE VGTC Conference on Point-Based Graphics, 125–133. Google ScholarDigital Library
19. Kolymbas, D. 1991. Computer-aided design of constitutive laws. International Journal for Numerical and Analytical Methods in Geomechanics 15, 8, 593–604.Google ScholarCross Ref
20. Lenaerts, T., and Dutr, P. 2009. Mixing fluids and granular materials. Computer Graphics Forum 28, 2, 213–218.Google ScholarCross Ref
21. Lenaerts, T., Adams, B., and Dutré, P. 2008. Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27, 3 (Aug.), 49:1–49:8. Google ScholarDigital Library
22. Libersky, L., and Petschek, A. 1991. Smooth particle hydrodynamics with strength of materials. In Advances in the Free-Lagrange Method Including Contributions on Adaptive Grid-ding and the Smooth Particle Hydrodynamics Method, H. Trease, M. Fritts, and W. Crowley, Eds., vol. 395 of Lecture Notes in Physics. Springer Berlin Heidelberg, 248–257.Google Scholar
23. Macklin, M., and Müller, M. 2013. Position based fluids. ACM Trans. Graph. 32, 4 (July), 104:1–104:12. Google ScholarDigital Library
24. Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. 2014. Unified particle physics for real-time applications. ACM Trans. Graph. 33, 4 (July), 153:1–153:12. Google ScholarDigital Library
25. Manninen, M., Taivassalo, V., and Kallio, S. 1996. On the mixture model for multiphase flow. VTT Technical Research Centre of Finland, 288.Google Scholar
26. Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. 29, 4 (July), 39:1–39:10. Google ScholarDigital Library
27. Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics 30, 1, 543–574.Google ScholarCross Ref
28. Monaghan, J. 1997. Sph and riemann solvers. J. Comput. Phys. 136, 2 (Sept.), 298–307. Google ScholarDigital Library
29. Müller, M., and Chentanez, N. 2011. Solid simulation with oriented particles. ACM Trans. Graph. 30, 4 (July), 92:1–92:10. Google ScholarDigital Library
30. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154–159. Google ScholarDigital Library
31. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 141–151. Google ScholarDigital Library
32. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM SIGGRAPH 2005 Papers, 471–478.Google Scholar
33. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 237–244. Google ScholarDigital Library
34. Narain, R., Golas, A., and Lin, M. C. 2010. Free-flowing granular materials with two-way solid coupling. ACM SIGGRAPH Asia 2010 Papers, 173:1–173:10. Google ScholarDigital Library
35. Peer, A., Ihmsen, M., Cornelis, J., and Teschner, M. 2015. An implicit viscosity formulation for sph fluids. ACM Trans. Graph. 34, 4 (July), 114:1–114:10. Google ScholarDigital Library
36. Randles, P. W., and Libersky, L. D. 2000. Normalized sph with stress points. International Journal for Numerical Methods in Engineering 48, 10, 1445–1462.Google ScholarCross Ref
37. Ren, B., Li, C., Yan, X., Lin, M. C., Bonet, J., and Hu, S.-M. 2014. Multiple-fluid sph simulation using a mixture model. ACM Trans. Graph. 33, 5 (Sept.), 171:1–171:11. Google ScholarDigital Library
38. Schaeffer, D. G. 1987. Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations 66, 1, 19–50.Google ScholarCross Ref
39. Shao, X., Zhou, Z., Magnenat-Thalmann, N., and Wu, W. 2015. Stable and fast fluid-solid coupling for incompressible sph. Comput. Graph. Forum 34, 1 (Feb.), 191–204. Google ScholarDigital Library
40. Solenthaler, B., and Pajarola, R. 2008. Density contrast sph interfaces. SCA ’08, 211–218. Google ScholarDigital Library
41. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible sph. ACM Trans. Graph. 28, 3 (July), 40:1–40:6. Google ScholarDigital Library
42. Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18, 1 (Feb.), 69–82. Google ScholarDigital Library
43. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4 (July), 102:1–102:10. Google ScholarDigital Library
44. Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. 2014. Augmented mpm for phase-change and varied materials. ACM Trans. Graph. 33, 4 (July), 138:1–138:11. Google ScholarDigital Library
45. Sulsky, D., Chen, Z., and Schreyer, H. 1994. A particle method for history-dependent materials. Computer Methods in Applied Mechanics and Engineering 118, 1C2, 179–196.Google Scholar
46. Swegle, J., Hicks, D., and Attaway, S. 1995. Smoothed particle hydrodynamics stability analysis. Journal of Computational Physics 116, 1, 123–134. Google ScholarDigital Library
47. Takahashi, T., Dobashi, Y., Fujishiro, I., Nishita, T., and Lin, M. C. 2015. Implicit formulation for sph-based viscous fluids. Comput. Graph. Forum 34, 2, 493–502. Google ScholarDigital Library
48. Wu, W., and Bauer, E. 1994. A simple hypoplastic constitutive model for sand. International Journal for Numerical and Analytical Methods in Geomechanics 18, 12, 833–862.Google ScholarCross Ref
49. Yang, T., Chang, J., Ren, B., Lin, M. C., Zhang, J. J., and Hu, S.-M. 2015. Fast multiple-fluid simulation using helmholtz free energy. ACM Trans. Graph. 34, 6 (Oct.), 201:1–201:11. Google ScholarDigital Library
50. Zhou, Y., Lun, Z., Kalogerakis, E., and Wang, R. 2013. Implicit integration for particle-based simulation of elasto-plastic solids. Computer Graphics Forum 32, 7, 215–223.Google ScholarCross Ref
51. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM SIGGRAPH 2005 Papers, 965–972. Google ScholarDigital Library