“Virtual spherical lights for many-light rendering of glossy scenes”
Conference:
Type(s):
Title:
- Virtual spherical lights for many-light rendering of glossy scenes
Session/Category Title: Global illumination
Presenter(s)/Author(s):
Moderator(s):
Abstract:
In this paper, we aim to lift the accuracy limitations of many-light algorithms by introducing a new light type, the virtual spherical light (VSL). The illumination contribution of a VSL is computed over a non-zero solid angle, thus eliminating the illumination spikes that virtual point lights used in traditional many-light methods are notorious for. The VSL enables application of many-light approaches in scenes with glossy materials and complex illumination that could previously be rendered only by much slower algorithms. By combining VSLs with the matrix row-column sampling algorithm, we achieve high-quality images in one to four minutes, even in scenes where path tracing or photon mapping take hours to converge.
References:
1. Christensen, P. H., Lischinski, D., Stollnitz, E. J., and Salesin, D. H. 1997. Clustering for glossy global illumination. ACM Trans. Graph. 16, 1, 2–33. Google ScholarDigital Library
2. Cohen, M. F., and Wallace, J. R. 1993. Radiosity and Realistic Image Synthesis. Morgan Kaufmann, San Francisco, CA. Google ScholarDigital Library
3. Fan, S., Chenney, S., and chi Lai, Y. 2005. Metropolis photon sampling with optional user guidance. In Rendering Techniques ’05 (Proceedings of the 16th Eurographics Symposium on Rendering), 127–138. Google ScholarCross Ref
4. Havran, V., Herzog, R., and Seidel, H.-P. 2005. Fast final gathering via reverse photon mapping. Computer Graphics Forum 24, 3, 323–333.Google ScholarCross Ref
5. Hašan, M., Pellacini, F., and Bala, K. 2007. Matrix row-column sampling for the many-light problem. ACM Trans. Graph. 26, 3, 26. Google ScholarDigital Library
6. Jensen, H. W. 2001. Realistic image synthesis using photon mapping. A. K. Peters, Ltd., Natick, MA, USA. Google ScholarDigital Library
7. Keller, A. 1997. Instant radiosity. In Proceedings of SIGGRAPH 97, 49–56. Google ScholarDigital Library
8. Kollig, T., and Keller, A. 2004. Illumination in the presence of weak singularities. In Monte Carlo And Quasi-monte Carlo Methods, 245–257.Google Scholar
9. Křivánek, J., Gautron, P., Pattanaik, S., and Bouatouch, K. 2005. Radiance caching for efficient global illumination. In IEEE Transactions on Visualization and Computer Graphics, 550–561. Google ScholarDigital Library
10. Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J., and Aila, T. 2007. Incremental instant radiosity for real-time indirect illumination. In Proceedings of Eurographics Symposium on Rendering, 277–286. Google ScholarCross Ref
11. Purcell, T. J., Donner, C., Cammarano, M., Jensen, H. W., and Hanrahan, P. 2003. Photon mapping on programmable graphics hardware. In Graphics Hardware, 41–50. Google ScholarDigital Library
12. Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. 2002. Photographic tone reproduction for digital images. ACM Trans. Graph. 21, 3, 267–276. Google ScholarDigital Library
13. Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J. 2008. Imperfect Shadow Maps for Efficient Computation of Indirect Illumination. ACM Trans. Graph. 27, 5, 129. Google ScholarDigital Library
14. Segovia, B., Iehl, J.-C., and Péroche, B. 2006. Bidirectional instant radiosity. In Proceedings of Eurographics Symposium on Rendering, 389–398. Google ScholarCross Ref
15. Suykens, F., and Willems, Y. D. 1999. Weighted multipass methods for global illumination. In Computer Graphics Forum, 209–220.Google Scholar
16. Veach, E. 1997. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University. Google ScholarDigital Library
17. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24, 3, 1098–1107. Google ScholarDigital Library
18. Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. 2006. Multidimensional lightcuts. ACM Trans. Graph. 25, 3, 1081–1088. Google ScholarDigital Library
19. Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. 2009. An efficient gpu-based approach for interactive global illumination. ACM Trans. Graph. 28, 3, 91. Google ScholarDigital Library
20. Ward, G. J., Rubinstein, F. M., and Clear, R. D. 1988. A ray tracing solution for diffuse interreflection. In Proceedings of ACM SIGGRAPH 88, 85–92. Google ScholarDigital Library


