“TexSliders: Diffusion-based Texture Editing in CLIP Space” – ACM SIGGRAPH HISTORY ARCHIVES

“TexSliders: Diffusion-based Texture Editing in CLIP Space”

  • ©

Conference:


Type(s):


Title:

    TexSliders: Diffusion-based Texture Editing in CLIP Space

Presenter(s)/Author(s):



Abstract:


    We propose a novel, diffusion-based approach for texture editing. We define editing directions using simple text prompts, map these to CLIP image-embedding space, and project the directions to a CLIP subspace that minimizes identity variations. Our editing pipeline facilitates the creation of arbitrary sliders using text only, without ground-truth data.

References:


    [1]
    Adobe. 2023. Adobe Substance Designer.

    [2]
    Adobe Stock. 2023. https://stock.adobe.com/.

    [3]
    Pranav Aggarwal, Hareesh Ravi, Naveen Marri, Sachin Kelkar, Fengbin Chen, Vinh Khuc, Midhun Harikumar, Ritiz Tambi, Sudharshan Reddy Kakumanu, Purvak Lapsiya, Alvin Ghouas, Sarah Saber, Malavika Ramprasad, Baldo Faieta, and Ajinkya Kale. 2023. Controlled and Conditional Text to Image Generation with Diffusion Prior. arXiv preprint arXiv:2302.11710 (2023).

    [4]
    Omri Avrahami, Ohad Fried, and Dani Lischinski. 2023. Blended latent diffusion. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1?11.

    [5]
    Omri Avrahami, Dani Lischinski, and Ohad Fried. 2022. Blended Diffusion for Text-Driven Editing of Natural Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 18208?18218.

    [6]
    Tim Brooks, Aleksander Holynski, and Alexei A Efros. 2023. Instructpix2pix: Learning to follow image editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 18392?18402.

    [7]
    Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and Matthias Nie?ner. 2023. Text2tex: Text-driven texture synthesis via diffusion models. arXiv preprint arXiv:2303.11396 (2023).

    [8]
    Niklas Deckers, Julia Peters, and Martin Potthast. 2023. Manipulating Embeddings of Stable Diffusion Prompts. arXiv preprint arXiv:2308.12059 (2023).

    [9]
    Valentin Deschaintre, Julia Guerrero-Viu, Diego Gutierrez, Tamy Boubekeur, and Belen Masia. 2023. The Visual Language of Fabrics. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1?15.

    [10]
    Prafulla Dhariwal and Alex Nichol. 2021. Diffusion Models Beat GANs on Image Synthesis. arXiv preprint, arXiv:2105.05233 (2021).

    [11]
    Dave Epstein, Allan Jabri, Ben Poole, Alexei A. Efros, and Aleksander Holynski. 2023. Diffusion Self-Guidance for Controllable Image Generation. Advances in Neural Information Processing Systems (2023).

    [12]
    Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel Cohen-Or. 2022a. An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion. arXiv preprint arXiv:2208.01618 (2022).

    [13]
    Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. 2022b. StyleGAN-NADA: CLIP-guided domain adaptation of image generators. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1?13.

    [14]
    Rohit Gandikota, Joanna Materzy?ska, Tingrui Zhou, Antonio Torralba, and David Bau. 2023. Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models. arXiv preprint arXiv:2311.12092 (2023).

    [15]
    Pascal Guehl, Remi All?gre, Jean-Michel Dischler, Bedrich Benes, and Eric Galin. 2020. Semi-Procedural Textures Using Point Process Texture Basis Functions. Computer Graphics Forum (2020).

    [16]
    Erik H?rk?nen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. 2020. Ganspace: Discovering interpretable gan controls. Advances in Neural Information Processing Systems 33 (2020), 9841?9850.

    [17]
    Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. 2020. Learning a Neural 3D Texture Space from 2D Exemplars. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 8356 ? 8364.

    [18]
    Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-or. 2023. Prompt-to-Prompt Image Editing with Cross-Attention Control. In International Conference on Learning Representations (ICLR).

    [19]
    Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Probabilistic Models. Advances in Neural Information Processing Systems 33 (2020), 6840?6851.

    [20]
    Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier. 2022. An Inverse Procedural Modeling Pipeline for SVBRDF Maps. ACM Transactions on Graphics (TOG) 41, 2 (2022), 1?17.

    [21]
    Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-Image Translation with Conditional Adversarial Networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2017), 5967?5976.

    [22]
    Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. 2023. Imagic: Text-Based Real Image Editing with Diffusion Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

    [23]
    Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. 2022. Diffusion Models Already Have A Semantic Latent Space. In International Conference on Learning Representations.

    [24]
    Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. 2017. Universal Style Transfer via Feature Transforms. In Advances in Neural Information Processing Systems.

    [25]
    Morteza Mardani, Guilin Liu, Aysegul Dundar, Shiqiu Liu, Andrew Tao, and Bryan Catanzaro. 2020. Neural ffts for universal texture image synthesis. Advances in Neural Information Processing Systems 33 (2020).

    [26]
    Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. 2022. SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations. In International Conference on Learning Representations.

    [27]
    Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 2023. Null-text inversion for editing real images using guided diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 6038?6047.

    [28]
    Alex Nichol and Prafulla Dhariwal. 2021. Improved Denoising Diffusion Probabilistic Models. International Conference on Machine Learning (ICML) (2021).

    [29]
    Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen. 2022. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. In International Conference on Machine Learning (ICML). 16784?16804.

    [30]
    Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu. 2023. Zero-shot image-to-image translation. In ACM SIGGRAPH Conference Proceedings. 1?11.

    [31]
    Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. 2021. StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2085?2094.

    [32]
    Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, 2021. Learning transferable visual models from natural language supervision. International Conference on Machine Learning (ICML) (2021), 8748?8763.

    [33]
    Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022).

    [34]
    Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. 2023. Texture: Text-guided texturing of 3d shapes. ACM SIGGRAPH Conference Proceedings (2023).

    [35]
    Carlos Rodriguez-Pardo, Sergio Suja, David Pascual, Jorge Lopez-Moreno, and Elena Garces. 2019. Automatic extraction and synthesis of regular repeatable patterns. Computers & Graphics 83 (2019), 33?41.

    [36]
    Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bj?rn Ommer. 2022. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10684?10695.

    [37]
    Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. 2023. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 22500?22510.

    [38]
    Sam Sartor and Pieter Peers. 2023. MatFusion: A Generative Diffusion Model for SVBRDF Capture. In ACM SIGGRAPH Asia Conference Proceedings.

    [39]
    Ana Serrano, Diego Gutierrez, Karol Myszkowski, Hans-Peter Seidel, and Belen Masia. 2016. An intuitive control space for material appearance. ACM Transactions on Graphics (TOG) 35, 6 (2016).

    [40]
    Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. 2019. SinGAN: Learning a Generative Model From a Single Natural Image. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019), 4569?4579.

    [41]
    Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. 2015. Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning (ICML). 2256?2265.

    [42]
    Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. 2021. Score-Based Generative Modeling through Stochastic Differential Equations. International Conference on Machine Learning (ICML).

    [43]
    Ad?la ?ubrtov?, Michal Luk??, Jan ?ech, David Futschik, Eli Shechtman, and Daniel S?kora. 2023. Diffusion image analogies. In ACM SIGGRAPH Conference Proceedings. 1?10.

    [44]
    Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. 2023. Plug-and-play diffusion features for text-driven image-to-image translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1921?1930.

    [45]
    Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky. 2016. Texture Networks: Feed-Forward Synthesis of Textures and Stylized Images. International Conference on Machine Learning (ICML), 1349?1357.

    [46]
    Giuseppe Vecchio, Rosalie Martin, Arthur Roullier, Adrien Kaiser, Romain Rouffet, Valentin Deschaintre, and Tamy Boubekeur. 2023. ControlMat: Controlled Generative Approach to Material Capture. arXiv preprint arXiv:2309.01700 (2023).

    [47]
    Chenyun Wu and Subhransu Maji. 2022. How well does CLIP understand texture?arXiv preprint arXiv:2203.11449 (2022).

    [48]
    Zongze Wu, Dani Lischinski, and Eli Shechtman. 2021. Stylespace analysis: Disentangled controls for stylegan image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 12863?12872.

    [49]
    Chenliang Zhou, Fangcheng Zhong, and Cengiz ?ztireli. 2023b. CLIP-PAE: Projection-Augmentation Embedding to Extract Relevant Features for a Disentangled, Interpretable and Controllable Text-Guided Face Manipulation. In ACM SIGGRAPH Conference Proceedings. 1?9.

    [50]
    Yufan Zhou, Bingchen Liu, Yizhe Zhu, Xiao Yang, Changyou Chen, and Jinhui Xu. 2023a. Shifted diffusion for text-to-image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10157?10166.

    [51]
    Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. 2018. Non-stationary texture synthesis by adversarial expansion. ACM Transactions on Graphics (TOG) 37 (2018), 1 ? 13.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org