“Subspace clothing simulation using adaptive bases” by Hahn, Thomaszewski, Coros, Sumner, Cole, et al. …

  • ©

Conference:


Type(s):


Title:

    Subspace clothing simulation using adaptive bases

Session/Category Title:   Subspace & Spacetime


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a new approach to clothing simulation using low-dimensional linear subspaces with temporally adaptive bases. Our method exploits full-space simulation training data in order to construct a pool of low-dimensional bases distributed across pose space. For this purpose, we interpret the simulation data as offsets from a kinematic deformation model that captures the global shape of clothing due to body pose. During subspace simulation, we select low-dimensional sets of basis vectors according to the current pose of the character and the state of its clothing. Thanks to this adaptive basis selection scheme, our method is able to reproduce diverse and detailed folding patterns with only a few basis vectors. Our experiments demonstrate the feasibility of subspace clothing simulation and indicate its potential in terms of quality and computational efficiency.

References:


    1. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5 (Dec.), 165:1–165:10. Google ScholarDigital Library
    2. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of SIGGRAPH 98, Annual Conference Series, 43–54. Google ScholarDigital Library
    3. Barbič, J., and James, D. L. 2005. Real-time subspace integration for st. venant-kirchhoff deformable models. ACM Trans. Graph. 24, 3 (July), 982–990. Google ScholarDigital Library
    4. Barbič, J., and James, D. L. 2010. Subspace self-collision culling. ACM Trans. Graph. 29, 4 (July), 81:1–81:9. Google ScholarDigital Library
    5. Bengio, J. C., and Goldenthal, R. 2013. Simplicial interpolation for animating the hulk. In ACM SIGGRAPH 2013 Talks, SIGGRAPH ’13, 7:1–7:1. Google ScholarDigital Library
    6. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July), 594–603. Google ScholarDigital Library
    7. de Aguiar, E., Sigal, L., Treuille, A., and Hodgins, J. K. 2010. Stable spaces for real-time clothing. ACM Trans. Graph. 29, 4 (July), 106:1–106:9. Google ScholarDigital Library
    8. Feng, W.-W., Yu, Y., and Kim, B.-U. 2010. A deformation transformer for real-time cloth animation. ACM Trans. Graph. 29, 4 (July), 108:1–108:9. Google ScholarDigital Library
    9. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 62–67. Google ScholarDigital Library
    10. Guan, P., Reiss, L., Hirshberg, D. A., Weiss, A., and Black, M. J. 2012. Drape: Dressing any person. ACM Trans. Graph. 31, 4 (July), 35:1–35:10. Google ScholarDigital Library
    11. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. 2012. Rig-space physics. ACM Trans. Graph. 31, 4 (July), 72:1–72:8. Google ScholarDigital Library
    12. Hahn, F., Thomaszewski, B., Coros, S., Sumner, R. W., and Gross, M. 2013. Efficient simulation of secondary motion in rig-space. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 165–171. Google ScholarDigital Library
    13. Harmon, D., and Zorin, D. 2013. Subspace integration with local deformations. ACM Trans. Graph. 32, 4 (July), 107:1–107:10. Google ScholarDigital Library
    14. James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. ACM Trans. Graph. 24, 3 (July), 399–407. Google ScholarDigital Library
    15. Kavan, L., Gerszewski, D., Bargteil, A. W., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4 (July), 93:1–93:10. Google ScholarDigital Library
    16. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28, 5 (Dec.), 123:1–123:9. Google ScholarDigital Library
    17. Kim, T.-Y., and Vendrovsky, E. 2008. Drivenshape: A data-driven approach for shape deformation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 49–55. Google ScholarDigital Library
    18. Kim, D., Koh, W., Narain, R., Fatahalian, K., Treuille, A., and O’Brien, J. F. 2013. Near-exhaustive precomputation of secondary cloth effects. ACM Trans. Graph. 32, 4 (July), 87:1–87:8. Google ScholarDigital Library
    19. Kry, P. G., James, D. L., and Pai, D. K. 2002. Eigenskin: Real time large deformation character skinning in hardware. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 153–159. Google ScholarDigital Library
    20. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 51, 479–504.Google ScholarCross Ref
    21. Kurihara, T., and Miyata, N. 2004. Modeling deformable human hands from medical images. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 355–363. Google ScholarDigital Library
    22. Lee, G. S. 2009. Evaluation of the radial basis function space. In ACM SIGGRAPH ASIA 2009 Sketches, SIGGRAPH ASIA ’09, 42:1–42:1. Google ScholarDigital Library
    23. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of SIGGRAPH 00, Annual Conference Series, 165–172. Google ScholarDigital Library
    24. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4 (July), 72:1–72:8. Google ScholarDigital Library
    25. Meyer, M., and Anderson, J. 2007. Key point subspace acceleration and soft caching. ACM Trans. Graph. 26, 3 (July). Google ScholarDigital Library
    26. Müller, M., and Chentanez, N. 2010. Wrinkle meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 85–92. Google ScholarDigital Library
    27. Neumann, T., Varanasi, K., Wenger, S., Wacker, M., Magnor, M., and Theobalt, C. 2013. Sparse localized deformation components. ACM Trans. Graph. 32, 6 (Nov.), 179:1–179:10. Google ScholarDigital Library
    28. Rohmer, D., Popa, T., Cani, M.-P., Hahmann, S., and Sheffer, A. 2010. Animation wrinkling: Augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Trans. Graph. 29, 6 (Dec.), 157:1–157:8. Google ScholarDigital Library
    29. Selle, A., Su, J., Irving, G., and Fedkiw, R. 2009. Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction. IEEE Transactions on Visualization and Computer Graphics 15, 2 (Mar.), 339–350. Google ScholarDigital Library
    30. Sloan, P.-P. J., Rose, III, C. F., and Cohen, M. F. 2001. Shape by example. In Proceedings of the Symposium on Interactive 3D Graphics, 135–143. Google ScholarDigital Library
    31. Thomaszewski, B., Pabst, S., and Wolfgang, S. 2008. Asynchronous cloth simulation. In Proceedings of Computer Graphics International 08.Google Scholar
    32. Wang, H., Hecht, F., Ramamoorthi, R., and O’Brien, J. F. 2010. Example-based wrinkle synthesis for clothing animation. ACM Trans. Graph. 29, 4 (July), 107:1–107:8. Google ScholarDigital Library
    33. Weber, O., Sorkine, O., Lipman, Y., and Gotsman, C. 2007. Context-aware skeletal shape deformation. Computer Graphics Forum (Proceedings of EUROGRAPHICS) 26, 3, 265–273.Google ScholarCross Ref
    34. Wong, S.-K., Lin, W.-C., Hung, C.-H., Huang, Y.-J., and Lii, S.-Y. 2013. Radial view based culling for continuous self-collision detection of skeletal models. ACM Trans. Graph. 32, 4 (July), 114:1–114:10. Google ScholarDigital Library
    35. Zheng, C., and James, D. L. 2012. Energy-based self-collision culling for arbitrary mesh deformations. ACM Trans. Graph. 31, 4 (July), 98:1–98:12. Google ScholarDigital Library
    36. Zurdo, J. S., Brito, J. P., and Otaduy, M. A. 2013. Animating wrinkles by example on non-skinned cloth. IEEE Trans. Vis. Comput. Graph. 19, 1 (Jan.), 149–158. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: