“Subject-Diffusion: Open Domain Personalized Text-to-image Generation Without Test-time Fine-tuning” – ACM SIGGRAPH HISTORY ARCHIVES

“Subject-Diffusion: Open Domain Personalized Text-to-image Generation Without Test-time Fine-tuning”

  • ©

Conference:


Type(s):


Title:

    Subject-Diffusion: Open Domain Personalized Text-to-image Generation Without Test-time Fine-tuning

Presenter(s)/Author(s):



Abstract:


    We present Subject-Diffusion, a novel open-domain personalized image generation model that, in addition to not requiring test-time fine-tuning, also only requires a single reference image to support personalized generation of single- or two-subjects in any domain.

References:


    [1]
    Yuval Alaluf, Elad Richardson, Gal Metzer, and Daniel Cohen-Or. 2023. A Neural Space-Time Representation for Text-to-Image Personalization. arXiv preprint arXiv:2305.15391 (2023).

    [2]
    Omri Avrahami, Kfir Aberman, Ohad Fried, Daniel Cohen-Or, and Dani Lischinski. 2023. Break-A-Scene: Extracting Multiple Concepts from a Single Image. arXiv preprint arXiv:2305.16311 (2023).

    [3]
    Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, 2022. ediffi: Text-to-image diffusion models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022).

    [4]
    Tim Brooks, Aleksander Holynski, and Alexei A Efros. 2023. Instructpix2pix: Learning to follow image editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18392?18402.

    [5]
    Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. 2018. Coco-stuff: Thing and stuff classes in context. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1209?1218.

    [6]
    Mathilde Caron, Hugo Touvron, Ishan Misra, Herv? J?gou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. 2021. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF international conference on computer vision. 9650?9660.

    [7]
    Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. 2023. Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion models. arXiv preprint arXiv:2301.13826 (2023).

    [8]
    Hong Chen, Yipeng Zhang, Xin Wang, Xuguang Duan, Yuwei Zhou, and Wenwu Zhu. 2023b. Disenbooth: Identity-preserving disentangled tuning for subject-driven text-to-image generation. arXiv preprint arXiv:2305.03374 (2023).

    [9]
    Li Chen, Mengyi Zhao, Yiheng Liu, Mingxu Ding, Yangyang Song, Shizun Wang, Xu Wang, Hao Yang, Jing Liu, Kang Du, 2023c. PhotoVerse: Tuning-Free Image Customization with Text-to-Image Diffusion Models. arXiv preprint arXiv:2309.05793 (2023).

    [10]
    Wenhu Chen, Hexiang Hu, Yandong Li, Nataniel Rui, Xuhui Jia, Ming-Wei Chang, and William W Cohen. 2023a. Subject-driven text-to-image generation via apprenticeship learning. arXiv preprint arXiv:2304.00186 (2023).

    [11]
    Wenhu Chen, Hexiang Hu, Chitwan Saharia, and William W Cohen. 2022. Re-imagen: Retrieval-augmented text-to-image generator. arXiv preprint arXiv:2209.14491 (2022).

    [12]
    Zhengcong Fei, Mingyuan Fan, and Junshi Huang. 2023. Gradient-Free Textual Inversion. arXiv preprint arXiv:2304.05818 (2023).

    [13]
    Zhida Feng, Zhenyu Zhang, Xintong Yu, Yewei Fang, Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxiang Liu, Weichong Yin, Shikun Feng, 2023. ERNIE-ViLG 2.0: Improving text-to-image diffusion model with knowledge-enhanced mixture-of-denoising-experts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10135?10145.

    [14]
    Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. 2022. An image is worth one word: Personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022).

    [15]
    Yuchao Gu, Xintao Wang, Jay Zhangjie Wu, Yujun Shi, Yunpeng Chen, Zihan Fan, Wuyou Xiao, Rui Zhao, Shuning Chang, Weijia Wu, 2023. Mix-of-Show: Decentralized Low-Rank Adaptation for Multi-Concept Customization of Diffusion Models. arXiv preprint arXiv:2305.18292 (2023).

    [16]
    Agrim Gupta, Piotr Dollar, and Ross Girshick. 2019. Lvis: A dataset for large vocabulary instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 5356?5364.

    [17]
    Inhwa Han, Serin Yang, Taesung Kwon, and Jong Chul Ye. 2023b. Highly Personalized Text Embedding for Image Manipulation by Stable Diffusion. arXiv preprint arXiv:2303.08767 (2023).

    [18]
    Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. 2023a. Svdiff: Compact parameter space for diffusion fine-tuning. arXiv preprint arXiv:2303.11305 (2023).

    [19]
    Shaozhe Hao, Kai Han, Shihao Zhao, and Kwan-Yee K Wong. 2023. ViCo: Detail-Preserving Visual Condition for Personalized Text-to-Image Generation. arXiv preprint arXiv:2306.00971 (2023).

    [20]
    Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 2022. Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022).

    [21]
    Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems 33 (2020), 6840?6851.

    [22]
    Matthew Honnibal, Ines Montani, Sofie Van Landeghem, Adriane Boyd, 2020. spaCy: Industrial-strength natural language processing in python. (2020).

    [23]
    Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021).

    [24]
    Junha Hyung, Jaeyo Shin, and Jaegul Choo. 2023. MagiCapture: High-Resolution Multi-Concept Portrait Customization. arxiv:2309.06895 [cs.CV]

    [25]
    Xuhui Jia, Yang Zhao, Kelvin CK Chan, Yandong Li, Han Zhang, Boqing Gong, Tingbo Hou, Huisheng Wang, and Yu-Chuan Su. 2023. Taming encoder for zero fine-tuning image customization with text-to-image diffusion models. arXiv preprint arXiv:2304.02642 (2023).

    [26]
    Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, 2023. Segment anything. arXiv preprint arXiv:2304.02643 (2023).

    [27]
    Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, 2017. Visual genome: Connecting language and vision using crowdsourced dense image annotations. International Journal of Computer Vision 123 (2017), 32?73.

    [28]
    Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. 2023. Multi-concept customization of text-to-image diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1931?1941.

    [29]
    Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, 2020. The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. International Journal of Computer Vision 128, 7 (2020), 1956?1981.

    [30]
    Dongxu Li, Junnan Li, and Steven CH Hoi. 2023a. Blip-diffusion: Pre-trained subject representation for controllable text-to-image generation and editing. arXiv preprint arXiv:2305.14720 (2023).

    [31]
    Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee. 2023b. Gligen: Open-set grounded text-to-image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 22511?22521.

    [32]
    Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, 2023a. Grounding dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499 (2023).

    [33]
    Zhiheng Liu, Yifei Zhang, Yujun Shen, Kecheng Zheng, Kai Zhu, Ruili Feng, Yu Liu, Deli Zhao, Jingren Zhou, and Yang Cao. 2023b. Cones 2: Customizable Image Synthesis with Multiple Subjects. arXiv preprint arXiv:2305.19327 (2023).

    [34]
    Jian Ma, Mingjun Zhao, Chen Chen, Ruichen Wang, Di Niu, Haonan Lu, and Xiaodong Lin. 2023b. GlyphDraw: Learning to Draw Chinese Characters in Image Synthesis Models Coherently. arXiv preprint arXiv:2303.17870 (2023).

    [35]
    Yiyang Ma, Huan Yang, Wenjing Wang, Jianlong Fu, and Jiaying Liu. 2023a. Unified multi-modal latent diffusion for joint subject and text conditional image generation. arXiv preprint arXiv:2303.09319 (2023).

    [36]
    Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen. 2022. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. In International Conference on Machine Learning. PMLR, 16784?16804.

    [37]
    Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, 2021. Learning transferable visual models from natural language supervision. In International conference on machine learning. PMLR, 8748?8763.

    [38]
    Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022).

    [39]
    Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, and Gal Chechik. 2023. Linguistic Binding in Diffusion Models: Enhancing Attribute Correspondence through Attention Map Alignment. arXiv preprint arXiv:2306.08877 (2023).

    [40]
    Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bj?rn Ommer. 2022. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10684?10695.

    [41]
    Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. 2023. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 22500?22510.

    [42]
    Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, 2022. Photorealistic text-to-image diffusion models with deep language understanding. Advances in Neural Information Processing Systems 35 (2022), 36479?36494.

    [43]
    Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, 2022. Laion-5b: An open large-scale dataset for training next generation image-text models. arXiv preprint arXiv:2210.08402 (2022).

    [44]
    Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. 2021. Laion-400m: Open dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114 (2021).

    [45]
    Jing Shi, Wei Xiong, Zhe Lin, and Hyun Joon Jung. 2023. Instantbooth: Personalized text-to-image generation without test-time finetuning. arXiv preprint arXiv:2304.03411 (2023).

    [46]
    James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia Jin. 2023. Continual diffusion: Continual customization of text-to-image diffusion with c-lora. arXiv preprint arXiv:2304.06027 (2023).

    [47]
    Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020a. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020).

    [48]
    Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. 2020b. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456 (2020).

    [49]
    Yoad Tewel, Rinon Gal, Gal Chechik, and Yuval Atzmon. 2023. Key-locked rank one editing for text-to-image personalization. arXiv preprint arXiv:2305.01644 (2023).

    [50]
    Andrey Voynov, Qinghao Chu, Daniel Cohen-Or, and Kfir Aberman. 2023. P + : Extended Textual Conditioning in Text-to-Image Generation. arXiv preprint arXiv:2303.09522 (2023).

    [51]
    Ruichen Wang, Zekang Chen, Chen Chen, Jian Ma, Haonan Lu, and Xiaodong Lin. 2023a. Compositional text-to-image synthesis with attention map control of diffusion models. arXiv preprint arXiv:2305.13921 (2023).

    [52]
    Yibin Wang, Weizhong Zhang, Jianwei Zheng, and Cheng Jin. 2023b. High-fidelity Person-centric Subject-to-Image Synthesis. arxiv:2311.10329 [cs.CV]

    [53]
    Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. 2023. Elite: Encoding visual concepts into textual embeddings for customized text-to-image generation. arXiv preprint arXiv:2302.13848 (2023).

    [54]
    Qiucheng Wu, Yujian Liu, Handong Zhao, Trung Bui, Zhe Lin, Yang Zhang, and Shiyu Chang. 2023. Harnessing the spatial-temporal attention of diffusion models for high-fidelity text-to-image synthesis. arXiv preprint arXiv:2304.03869 (2023).

    [55]
    Guangxuan Xiao, Tianwei Yin, William T Freeman, Fr?do Durand, and Song Han. 2023. FastComposer: Tuning-Free Multi-Subject Image Generation with Localized Attention. arXiv preprint arXiv:2305.10431 (2023).

    [56]
    Jianan Yang, Haobo Wang, Ruixuan Xiao, Sai Wu, Gang Chen, and Junbo Zhao. 2023. Controllable Textual Inversion for Personalized Text-to-Image Generation. arXiv preprint arXiv:2304.05265 (2023).

    [57]
    Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. 2023. IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models. arxiv:2308.06721 [cs.CV]

    [58]
    Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba. 2019. Semantic understanding of scenes through the ade20k dataset. International Journal of Computer Vision 127 (2019), 302?321.

    [59]
    Yufan Zhou, Ruiyi Zhang, Jiuxiang Gu, and Tong Sun. 2023a. Customization Assistant for Text-to-image Generation. arxiv:2312.03045 [cs.CV]

    [60]
    Yufan Zhou, Ruiyi Zhang, Tong Sun, and Jinhui Xu. 2023b. Enhancing Detail Preservation for Customized Text-to-Image Generation: A Regularization-Free Approach. arXiv preprint arXiv:2305.13579 (2023).


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org