“Stormscapes: simulating cloud dynamics in the now” by Hädrich, Makowski, Pałubicki, Banuti, Pirk, et al. … – ACM SIGGRAPH HISTORY ARCHIVES

“Stormscapes: simulating cloud dynamics in the now” by Hädrich, Makowski, Pałubicki, Banuti, Pirk, et al. …

  • 2020 SA Technical Papers_Hädrich_Stormscapes: simulating cloud dynamics in the now

Conference:


Type(s):


Title:

    Stormscapes: simulating cloud dynamics in the now

Session/Category Title:   Animation: Fluids - Phenomenon


Presenter(s)/Author(s):



Abstract:


    The complex interplay of a number of physical and meteorological phenomena makes simulating clouds a challenging and open research problem. We explore a physically accurate model for simulating clouds and the dynamics of their transitions. We propose first-principle formulations for computing buoyancy and air pressure that allow us to simulate the variations of atmospheric density and varying temperature gradients. Our simulation allows us to model various cloud types, such as cumulus, stratus, and stratoscumulus, and their realistic formations caused by changes in the atmosphere. Moreover, we are able to simulate large-scale cloud super cells – clusters of cumulonimbus formations – that are commonly present during thunderstorms. To enable the efficient exploration of these stormscapes, we propose a lightweight set of high-level parameters that allow us to intuitively explore cloud formations and dynamics. Our method allows us to simulate cloud formations of up to about 20 km × 20 km extents at interactive rates. We explore the capabilities of physically accurate and yet interactive cloud simulations by showing numerous examples and by coupling our model with atmosphere measurements of real-time weather services to simulate cloud formations in the now. Finally, we quantitatively assess our model with cloud fraction profiles, a common measure for comparing cloud types.

References:


    1. J. D. Anderson. 2003. Modern compressible flow with historical perspective (3rd ed.). McGraw Hill.Google Scholar
    2. B. Bitterli, S. Ravichandran, T. Müller, M. Wrenninge, J. Novák, S. Marschner, and W. Jarosz. 2018. A Radiative Transfer Framework for Non-Exponential Media. ACM Trans. Graph. 37, 6, Article Article 225 (Dec. 2018), 17 pages.Google ScholarDigital Library
    3. J. F. Blinn. 1982. Light Reflection Functions for Simulation of Clouds and Dusty Surfaces. SIGGRAPH Comput. Graph. 16, 3 (1982), 21–29.Google ScholarDigital Library
    4. A. Bouthors and F. Neyret. 2004. Modeling clouds shape. In Eurographics 2004 – Short Presentations, M. Alexa and E. Galin (Eds.). Eurographics Association.Google Scholar
    5. A. Bouthors, F. Neyret, and S. Lefebvre. 2006. Real-Time Realistic Illumination and Shading of Stratiform Clouds. In Proceedings of the Second Eurographics Conference on Natural Phenomena (NPH’06). Eurographics Association, 41–50.Google Scholar
    6. A. Bouthors, F. Neyret, N. Max, E. Bruneton, and C. Crassin. 2008. Interactive Multiple Anisotropic Scattering in Clouds. In I3D (2008). 173–182.Google Scholar
    7. R. Bridson. 2008. Fluid Simulation for Computer Graphics. A K Peters, CRC Press.Google Scholar
    8. R. Bridson and M. Müller. 2007. Fluid simulation: SIGGRAPH 2007 course notes. (2007), 1–81.Google Scholar
    9. G. Cesana, A. D. Del Genio, and H. Chepfer. 2019. The Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD). Earth Syst. Sci. Data 11 (2019), 1745–1764.Google ScholarCross Ref
    10. D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley. 2002. Texturing and Modeling: A Procedural Approach (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.Google Scholar
    11. Q. Cui, P. Sen, and T. Kim. 2018. Scalable Laplacian Eigenfluids. ACM Trans. Graph. 37, 4, Article 87 (2018), 12 pages.Google ScholarDigital Library
    12. Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita. 2000. A Simple, Efficient Method for Realistic Animation of Clouds. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’00). 19–28.Google ScholarDigital Library
    13. Y. Dobashi, K. Kusumoto, T. Nishita, and T. Yamamoto. 2008. Feedback Control of Cumuliform Cloud Formation Based on Computational Fluid Dynamics. In ACM SIGGRAPH 2008 Papers (SIGGRAPH ’08). Association for Computing Machinery, Article Article 94, 8 pages.Google Scholar
    14. Y. Dobashi, Y. Shinzo, and T. Yamamoto. 2010. Modeling of Clouds from a Single Photograph. CGF 29, 7 (2010), 2083–2090.Google ScholarCross Ref
    15. R. P. M. Duarte and A. J. P. Gomes. 2017. Real-Time Simulation of Cumulus Clouds through SkewT/LogP Diagrams. Comput. Graph. 67, C (2017), 103–114.Google Scholar
    16. R. Fedkiw, J. Stam, and H. W. Jensen. 2001. Visual Simulation of Smoke. Proc. of ACM SIGGRAPH (2001), 15–22.Google Scholar
    17. C. W. Ferreira Barbosa, Y. Dobashi, and T. Yamamoto. 2015. Adaptive Cloud Simulation Using Position Based Fluids. Comput. Animat. Virtual Worlds 26, 3–4 (2015), 367–375.Google Scholar
    18. F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thürey. 2016. Narrow Band FLIP for Liquid Simulations. In Proceedings of the 37th Annual Conference of the European Association for Computer Graphics (EG ’16). Eurographics Association, 225–232.Google Scholar
    19. F. Ferstl, R. Westermann, and C. Dick. 2014. Large-Scale Liquid Simulation on Adaptive Hexahedral Grids. TVCG 20, 10 (2014), 1405–1417.Google ScholarCross Ref
    20. I. Garcia-Dorado, D. G. Aliaga, S. Bhalachandran, P. Schmid, and D. Niyogi. 2017. Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models. ACM Trans. Graph. 36, 2, Article Article 21 (2017), 19 pages.Google ScholarDigital Library
    21. G. Y. Gardner. 1985. Visual Simulation of Clouds. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’85). Association for Computing Machinery, 297–304.Google ScholarDigital Library
    22. P. Goswami and F. Neyret. 2017. Real-Time Landscape-Size Convective Clouds Simulation and Rendering. In Proceedings of the 13th Workshop on Virtual Reality Interactions and Physical Simulations (VRIPHYS ’17). Eurographics Association, 1–8.Google Scholar
    23. L. D. Grant and S. C. Van Den Heever. 2014. Microphysical and dynamical characteristics of low-precipitation and classic supercells. Journal of the Atmospheric Sciences 71, 7 (2014), 2604–2624.Google ScholarCross Ref
    24. J. Guo, Y. Chen, B. Hu, L.-Q. Yan, Y. Guo, and Y. Liu. 2019. Fractional Gaussian Fields for Modeling and Rendering of Spatially-Correlated Media. ACM Trans. Graph. 38, 4, Article Article 45 (July 2019), 13 pages.Google ScholarDigital Library
    25. M. Gupta and S. G. Narasimhan. 2007. Legendre Fluids: A Unified Framework for Analytic Reduced Space Modeling and Rendering of Participating Media. In Symposium on Computer Animation (SCA ’07). Eurographics Association, 17–25.Google Scholar
    26. M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. 2003. Simulation of Cloud Dynamics on Graphics Hardware. In ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS ’03). Eurographics Association, 92–101.Google Scholar
    27. M. J. Harris and A. Lastra. 2001. Real-Time Cloud Rendering. CGF 20, 3 (2001), 76–85.Google ScholarCross Ref
    28. R. A. Houze. 1994. Cloud Dynamics. Elsevier Science.Google Scholar
    29. M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner. 2014. SPH Fluids in Computer Graphics. In Eurographics 2014 – State of the Art Reports.Google Scholar
    30. T. Inglis, M.-L. Eckert, J. Gregson, and N. Thürey. 2017. Primal-Dual Optimization for Fluids. CGF 36, 8 (2017), 354–368.Google ScholarCross Ref
    31. ISO. 1975. Standard Atmosphere. Technical Report ISO 2533:1975. International Organization for Standardization.Google Scholar
    32. Itseez. 2015. Open Source Computer Vision Library. https://github.com/itseez/opencv.Google Scholar
    33. A. D. Jones, P. Sen, and T. Kim. 2016. Compressing Fluid Subspaces. In Symposium on Computer Animation (SCA ’16). Eurographics Association, 77–84.Google Scholar
    34. J. T. Kajiya and B. P. Von Herzen. 1984. Ray Tracing Volume Densities. SIGGRAPH Comput. Graph. 18, 3 (1984), 165–174.Google ScholarDigital Library
    35. M. Kass and G. Miller. 1990. Rapid, Stable Fluid Dynamics for Computer Graphics. In Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’90). Association for Computing Machinery, 49–57.Google Scholar
    36. E. Kessler. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulations. American Meteorological Society, Boston, MA, 1–84.Google Scholar
    37. B. Kim, V. C. Azevedo, M. Gross, and B. Solenthaler. 2020. Lagrangian Neural Style Transfer for Fluids. ACM Transaction on Graphics (SIGGRAPH) (2020).Google Scholar
    38. B. Kim, V. C. Azevedo, N. Thürey, T. Kim, M. Gross, and B. Solenthaler. 2019. Deep Fluids: A Generative Network for Parameterized Fluid Simulations. CGF 38, 2 (2019), 59–70.Google ScholarCross Ref
    39. D. Koschier, J. Bender, B. Solenthaler, and M. Teschner. 2019. Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids. In Eurographics 2019 – Tutorials. The Eurographics Association.Google Scholar
    40. P. K. Kundu, I. M. Cohen, and D. R. Dowling. 2012. Fluid Mechanics. Elsevier Science.Google Scholar
    41. A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D.S. Ebert, J.P. Lewis, K. Perlin, and M. Zwicker. 2010. A Survey of Procedural Noise Functions. CGF 29, 8 (2010), 2579–2600.Google ScholarCross Ref
    42. M. Limpinsel, D. Kuo, and A. Vijh. 2018. SMARTS Modeling of Solar Spectra at Stratospheric Altitude and Influence on Performance of Selected III-V Solar Cells.Google Scholar
    43. F. Losasso, F. Gibou, and R. Fedkiw. 2004. Simulating Water and Smoke with an Octree Data Structure. In ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04). Association for Computing Machinery, 457–462.Google Scholar
    44. W. Lu, N. Jin, and R. Fedkiw. 2016. Two-Way Coupling of Fluids to Reduced Deformable Bodies. In Symposium on Computer Animation (SCA ’16). Eurographics Association, 67–76.Google Scholar
    45. A. McAdams, E. Sifakis, and J. Teran. 2010. A Parallel Multigrid Poisson Solver for Fluids Simulation on Large Grids. In Symposium on Computer Animation (SCA ’10). Eurographics Association, 65–74.Google Scholar
    46. B. Miller, I. Georgiev, and W. Jarosz. 2019. A Null-Scattering Path Integral Formulation of Light Transport. ACM Trans. Graph. 38, 4, Article Article 44 (July 2019), 13 pages.Google ScholarDigital Library
    47. R. Miyazaki, Y. Dobashi, and T. Nishita. 2002. Simulation of Cumuliform Clouds Based on Computational Fluid Dynamics. In Eurographics.Google Scholar
    48. R. Miyazaki, S. Yoshida, T. Nishita, and Y. Dobashi. 2001. A Method for Modeling Clouds Based on Atmospheric Fluid Dynamics. In PG. IEEE Computer Society, USA, 363.Google Scholar
    49. F. Neyret. 1997. Qualitative Simulation of Convective Cloud Formation and Evolution. In Computer Animation and Simulation ’97, D. Thalmann and M. van de Panne (Eds.). Springer Vienna, Vienna, 113–124.Google Scholar
    50. T. Nishita, Y. Dobashi, and E. Nakamae. 1996. Display of Clouds Taking into Account Multiple Anisotropic Scattering and Sky Light. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’96). Association for Computing Machinery, 379–386.Google Scholar
    51. G. R. North, J. A. Pyle, and F. Zhang. 2014. Encyclopedia of Atmospheric Sciences. Number v. 1–6. Elsevier Science.Google Scholar
    52. J. Novák, I. Georgiev, J. Hanika, J. Křivánek, and W. Jarosz. 2018. Monte Carlo Methods for Physically Based Volume Rendering. In ACM SIGGRAPH 2018 Courses (SIGGRAPH ’18). Article Article 14, 1 pages.Google Scholar
    53. D. Overby, Z. Melek, and J. Keyser. 2002. Interactive physically-based cloud simulation. In 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings. 469–470.Google Scholar
    54. H.-O. Peitgen and D. Saupe (Eds.). 1988. The Science of Fractal Images. Springer-Verlag, Berlin, Heidelberg.Google Scholar
    55. K. Perlin. 1985. An Image Synthesizer. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’85). Association for Computing Machinery, 287–296.Google ScholarDigital Library
    56. M. Pharr, W. Jakob, and G. Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc.Google Scholar
    57. S. Sato, Y. Dobashi, T. Kim, and T. Nishita. 2018b. Example-Based Turbulence Style Transfer. ACM Trans. Graph. 37, 4, Article 84 (2018), 9 pages.Google ScholarDigital Library
    58. S. Sato, Y. Dobashi, and T. Nishita. 2018a. Editing Fluid Animation Using Flow Interpolation. ACM Trans. Graph. 37, 5, Article 173 (2018), 12 pages.Google ScholarDigital Library
    59. J. Schpok, J. Simons, D. S. Ebert, and C. Hansen. 2003. A Real-Time Cloud Modeling, Rendering, and Animation System. In Symposium on Computer Animation (SCA ’03). Eurographics Association, 160–166.Google Scholar
    60. J. T. Seeley, N. Jeevanjee, W. Langhans, and D. M. Romps. 2019. Formation of Tropical Anvil Clouds by Slow Evaporation. Geophysical Research Letters 46, 1 (2019), 492–501.Google ScholarCross Ref
    61. R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. 2014. SPGrid: A Sparse Paged Grid Structure Applied to Adaptive Smoke Simulation. ACM Trans. Graph. 33, 6, Article 205 (2014), 12 pages.Google ScholarDigital Library
    62. Z. Shen, K. G. Pressel, Z. Tan, and T. Schneider. 2020. Statistically Steady State Large-Eddy Simulations Forced by an Idealized GCM: 1. Forcing Framework and Simulation Characteristics. Journal of Advances in Modeling Earth Systems 12, 2 (2020), e2019MS001814.Google ScholarCross Ref
    63. J. Stam. 1999. Stable Fluids. Proc. of ACM SIGGRAPH (1999), 121–128.Google Scholar
    64. J. Steinhoff and D. Underhill. 1994. Modification of the Euler equations for “vorticity confinement”: Application to the computation of interacting vortex rings. Phys. Fluids 6, 8 (1994), 2738–2744.Google ScholarCross Ref
    65. M. Stiver, A. Baker, A. Runions, and F. Samavati. 2010. Sketch Based Volumetric Clouds. In Proceedings of the 10th International Conference on Smart Graphics (SG’10). Springer-Verlag, 1–12.Google Scholar
    66. Y. Teng, D. I. W. Levin, and T. Kim. 2016. Eulerian Solid-Fluid Coupling. ACM Trans. Graph. 35, 6, Article 200 (Nov. 2016), 8 pages.Google ScholarDigital Library
    67. A. Treuille, A. Lewis, and Z. Popović. 2006. Model Reduction for Real-Time Fluids. ACM Trans. Graph. 25, 3 (2006), 826–834.Google ScholarDigital Library
    68. K. Um, X. Hu, and N. Thürey. 2018. Liquid Splash Modeling with Neural Networks. CGF 37, 8 (2018), 171–182.Google ScholarCross Ref
    69. B. Ummenhofer, L. Prantl, N. Thürey, and V. Koltun. 2020. Lagrangian Fluid Simulation with Continuous Convolutions. In ICLR.Google Scholar
    70. U. Vimont, J. Gain, M. Lastic, G. Cordonnier, B. Abiodun, and M.-C. Cani. 2020. Interactive Meso-scale Simulation of Skyscapes. Eurographics (2020).Google Scholar
    71. R. F. Voss. 1988. Fractals in Nature: From Characterization to Simulation. Springer-Verlag, Berlin, Heidelberg. 21–70 pages.Google Scholar
    72. A. Webanck, Y. Cortial, E. Guérin, and E. Galin. 2018. Procedural Cloudscapes. CGF 37, 2 (2018), 431–442.Google ScholarCross Ref
    73. S. Wiewel, M. Becher, and N. Thürey. 2019. Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow. CGF 38, 2 (2019), 71–82.Google ScholarCross Ref
    74. J. Wither, A. Bouthors, and M.-P. Cani. 2008. Rapid Sketch Modeling of Clouds. In Proceedings of the Fifth Eurographics Conference on Sketch-Based Interfaces and Modeling (SBM’08). Eurographics Association, 113–118.Google ScholarDigital Library
    75. Y. Xie, E. Franz, M. Chu, and N. Thürey. 2018. TempoGAN: A Temporally Coherent, Volumetric GAN for Super-Resolution Fluid Flow. ACM Trans. Graph. 37, 4, Article 95 (2018), 15 pages.Google ScholarDigital Library
    76. M. K. Yau and R. R. Rogers. 1996. A Short Course in Cloud Physics. Elsevier Science.Google Scholar
    77. C.-M. Yu and C.-M. Wang. 2011. An Effective Framework for Cloud Modeling, Rendering, and Morphing. J. Inf. Sci. Eng. 27 (05 2011), 891–913.Google Scholar
    78. C. Yuan, X. Liang, S. Hao, Y. Qi, and Q. Zhao. 2014. Modelling Cumulus Cloud Shape from a Single Image. CGF 33, 6 (2014), 288–297.Google ScholarDigital Library
    79. J. Zehnder, R. Narain, and B. Thomaszewski. 2018. An Advection-Reflection Solver for Detail-Preserving Fluid Simulation. ACM Trans. Graph. 37, 4, Article 85 (2018), 8 pages.Google ScholarDigital Library
    80. X. Zhang, M. Li, and R. Bridson. 2016. Resolving Fluid Boundary Layers with Particle Strength Exchange and Weak Adaptivity. ACM Trans. Graph. 35, 4, Article 76 (July 2016), 8 pages.Google ScholarDigital Library
    81. Y. Zhu and R. Bridson. 2005. Animating Sand as a Fluid. ACM Trans. Graph. 24, 3 (2005), 965–972.Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org