“SPAGHETTI: editing implicit shapes through part aware generation” by Hertz, Perel, Giryes, Sorkine-Hornung and Cohen-Or

  • ©

Conference:


Type(s):


Title:

    SPAGHETTI: editing implicit shapes through part aware generation

Presenter(s)/Author(s):



Abstract:


    Neural implicit fields are quickly emerging as an attractive representation for learning based techniques. However, adopting them for 3D shape modeling and editing is challenging. We introduce a method for Editing Implicit Shapes Through Part Aware GeneraTion, permuted in short as SPAGHETTI. Our architecture allows for manipulation of implicit shapes by means of transforming, interpolating and combining shape segments together, without requiring explicit part supervision. SPAGHETTI disentangles shape part representation into extrinsic and intrinsic geometric information. This characteristic enables a generative framework with part-level control. The modeling capabilities of SPAGHETTI are demonstrated using an interactive graphical interface, where users can directly edit neural implicit shapes. Our code, editing user interface demo and pre-trained models are available at github.com/amirhertz/spaghetti.

References:


    1. Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. 2018. Learning representations and generative models for 3d point clouds. In International conference on machine learning. PMLR, 40–49.Google Scholar
    2. Matan Atzmon and Yaron Lipman. 2020. SAL: Sign Agnostic Learning of Shapes From Raw Data. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
    3. Gavin Barill, Neil Dickson, Ryan Schmidt, David I.W. Levin, and Alec Jacobson. 2018. Fast Winding Numbers for Soups and Clouds. ACM Transactions on Graphics (2018).Google Scholar
    4. Piotr Bojanowski, Armand Joulin, David Lopez-Pas, and Arthur Szlam. 2018. Optimizing the Latent Space of Generative Networks. In International Conference on Machine Learning. PMLR, 600–609.Google Scholar
    5. Marie-Paule Cani, Takeo Igarashi, and Geoff Wyvill. 2008. Interactive Shape Design. Morgan & Claypool Publishers. 78 pages. Google ScholarCross Ref
    6. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans. 2001. Reconstruction and Representation of 3D Objects with Radial Basis Functions (SIGGRAPH ’01). Association for Computing Machinery, New York, NY, USA, 67–76. Google ScholarDigital Library
    7. Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and Richard Newcombe. 2020a. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction. In European Conference on Computer Vision. Springer, 608–625.Google ScholarDigital Library
    8. Rohan Chabra, Jan E. Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and Richard Newcombe. 2020b. Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction. In Computer Vision – ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International Publishing, Cham, 608–625.Google ScholarDigital Library
    9. Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015).Google Scholar
    10. Siddhartha Chaudhuri, Daniel Ritchie, Kai Xu, and Hao Zhang. 2019. Learning Generative Models of 3D Structures. In Eurographics.Google Scholar
    11. Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. 2020. BSP-Net: Generating Compact Meshes via Binary Space Partitioning. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020).Google ScholarCross Ref
    12. Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha Chaudhuri, and Hao Zhang. 2019. BAE-NET: Branched Autoencoder for Shape Co-Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).Google ScholarCross Ref
    13. Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5939–5948.Google ScholarCross Ref
    14. Daniel Cohen-Or, Amira Solomovic, and David Levin. 1998. Three-Dimensional Distance Field Metamorphosis. ACM Trans. Graph. 17, 2 (apr 1998), 116–141. Google ScholarDigital Library
    15. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).Google Scholar
    16. Laurent Dinh, David Krueger, and Yoshua Bengio. 2014. Nice: Non-linear independent components estimation. arXiv preprint arXiv:1410.8516 (2014).Google Scholar
    17. Benjamin Eckart, Kihwan Kim, and Jan Kautz. 2018. Hgmr: Hierarchical gaussian mixtures for adaptive 3d registration. In Proceedings of the European Conference on Computer Vision (ECCV). 705–721.Google ScholarDigital Library
    18. Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J Mitra, and Michael Wimmer. 2020. Points2surf learning implicit surfaces from point clouds. In European Conference on Computer Vision. Springer, 108–124.Google ScholarDigital Library
    19. Noa Fish*, Melinos Averkiou*, Oliver van Kaick, Olga Sorkine-Hornung, Daniel Cohen-Or, and Niloy J. Mitra. 2014. Meta-representation of Shape Families. Transactions on Graphics (Special issue of SIGGRAPH 2014) (2014), 11 pages. * joint first authors.Google Scholar
    20. Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by example. ACM transactions on graphics (TOG) 23, 3 (2004), 652–663.Google Scholar
    21. Rinon Gal, Amit Bermano, Hao Zhang, and Daniel Cohen-Or. 2021. MRGAN: Multi-Rooted 3D Shape Generation with Unsupervised Part Disentanglement. In ICCV Workshop on Structural and Compositional Learning on 3D Data (StruCo3D).Google Scholar
    22. Ran Gal, Olga Sorkine, Niloy J Mitra, and Daniel Cohen-Or. 2009. iWIRES: An analyze-and-edit approach to shape manipulation. In ACM SIGGRAPH 2009 papers. 1–10.Google ScholarDigital Library
    23. Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao Zhang. 2019. SDM-NET: Deep Generative Network for Structured Deformable Mesh. ACM Trans. Graph. 38, 6, Article 243 (nov 2019), 15 pages. Google ScholarDigital Library
    24. Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. 2020. Local deep implicit functions for 3d shape. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4857–4866.Google ScholarCross Ref
    25. Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas Funkhouser. 2019a. Learning shape templates with structured implicit functions. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 7154–7164.Google ScholarCross Ref
    26. Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T. Freeman, and Thomas A. Funkhouser. 2019b. Learning Shape Templates With Structured Implicit Functions. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019), 7153–7163.Google Scholar
    27. R. Girdhar, D.F. Fouhey, M. Rodriguez, and A. Gupta. 2016. Learning a Predictable and Generative Vector Representation for Objects. In ECCV.Google Scholar
    28. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems – Volume 2 (Montreal, Canada) (NIPS’14). MIT Press, Cambridge, MA, USA, 2672–2680.Google ScholarDigital Library
    29. Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu Aubry. 2018. AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).Google Scholar
    30. Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge Belongie. 2020. Dualsdf: Semantic shape manipulation using a two-level representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7631–7641.Google ScholarCross Ref
    31. Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul Debevec. 2021. Baking Neural Radiance Fields for Real-Time View Synthesis. ICCV (2021).Google Scholar
    32. Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or. 2020. PointGMM: A Neural GMM Network for Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarCross Ref
    33. Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. 2021. SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization. In Thirty-Fifth Conference on Neural Information Processing Systems.Google Scholar
    34. D.D. Hoffman and W.A. Richards. 1984. Parts of recognition. Cognition 18, 1 (1984), 65–96. Google ScholarCross Ref
    35. Jingwei Huang, Hao Su, and Leonidas Guibas. 2018. Robust Watertight Manifold Surface Generation Method for ShapeNet Models. arXiv preprint arXiv:1802.01698 (2018).Google Scholar
    36. Qixing Huang, F. Wang, and Leonidas J. Guibas. 2014. Functional map networks for analyzing and exploring large shape collections. ACM Transactions on Graphics (TOG) 33 (2014), 1–11.Google ScholarDigital Library
    37. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/.Google Scholar
    38. Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas Guibas. 2020a. Shape-Flow: Learnable Deformations Among 3D Shapes. In Advances in Neural Information Processing Systems.Google Scholar
    39. Chiyu Max Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and Thomas Funkhouser. 2020b. Local Implicit Grid Representations for 3D Scenes. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).Google ScholarCross Ref
    40. Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D Mesh Segmentation and Labeling. ACM Trans. Graph. 29, 4, Article 102 (jul 2010), 12 pages. Google ScholarDigital Library
    41. Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen DiVerdi, and Thomas Funkhouser. 2013. Learning Part-Based Templates from Large Collections of 3D Shapes. 32, 4, Article 70 (jul 2013), 12 pages.Google Scholar
    42. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google Scholar
    43. Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings. arXiv:http://arxiv.org/abs/1312.6114v10 [stat.ML]Google Scholar
    44. Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. 2019. Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. In Proceedings of the 36th International Conference on Machine Learning. 3744–3753.Google Scholar
    45. Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos, and Ruslan Salakhutdinov. 2018. Point cloud gan. arXiv preprint arXiv:1810.05795 (2018).Google Scholar
    46. Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas. 2017. GRASS: Generative Recursive Autoencoders for Shape Structures. ACM Trans. Graph. 36, 4, Article 52 (jul 2017), 14 pages. Google ScholarDigital Library
    47. Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir, Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. 2019. GRAINS: Generative Recursive Autoencoders for INdoor Scenes. ACM Trans. Graph. 38, 2, Article 12 (feb 2019), 16 pages. Google ScholarDigital Library
    48. Ruihui Li, Xianzhi Li, Ke-Hei Hui, and Chi-Wing Fu. 2021. SP-GAN:Sphere-Guided 3D Shape Generation and Manipulation. ACM Transactions on Graphics (Proc. SIGGRAPH) 40, 4 (2021).Google Scholar
    49. Jerry Liu, Fisher Yu, and Thomas Funkhouser. 2017. Interactive 3D Modeling with a Generative Adversarial Network. In 2017 International Conference on 3D Vision (3DV). 126–134. Google ScholarCross Ref
    50. David Lopez-Paz and Maxime Oquab. 2017. Revisiting Classifier Two-Sample Tests. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=SJkXfE5xxGoogle Scholar
    51. William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution 3D surface construction algorithm. ACM siggraph computer graphics 21, 4 (1987), 163–169.Google Scholar
    52. Julien NP Martel, David B Lindell, Connor Z Lin, Eric R Chan, Marco Monteiro, and Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural Scene Representation. arXiv preprint arXiv:2105.02788 (2021).Google Scholar
    53. Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).Google ScholarCross Ref
    54. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV.Google Scholar
    55. Niloy J Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, Vladimir Kim, and Qi-Xing Huang. 2014. Structure-aware shape processing. In ACM SIGGRAPH 2014 Courses. 1–21.Google ScholarDigital Library
    56. Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao Su. 2019. PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarCross Ref
    57. Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter W. Battaglia. 2020. PolyGen: An Autoregressive Generative Model of 3D Meshes. ICML (2020).Google Scholar
    58. C. Nash and C. K. I. Williams. 2017. The Shape Variational Autoencoder: A Deep Generative Model of Part-Segmented 3D Objects. Comput. Graph. Forum 36, 5 (aug 2017), 1–12. Google ScholarDigital Library
    59. Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray Kavukcuoglu. 2016. Conditional Image Generation with PixelCNN Decoders. In Proceedings of the 30th International Conference on Neural Information Processing Systems (Barcelona, Spain) (NIPS’16). Curran Associates Inc., Red Hook, NY, USA, 4797–4805.Google Scholar
    60. Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019. Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 165–174.Google ScholarCross Ref
    61. Despoina Paschalidou, Luc Van Gool, and Andreas Geiger. 2020a. Learning unsupervised hierarchical part decomposition of 3d objects from a single rgb image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1060–1070.Google ScholarCross Ref
    62. Despoina Paschalidou, Luc van Gool, and Andreas Geiger. 2020b. Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).Google ScholarCross Ref
    63. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdfGoogle Scholar
    64. Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. 2020. Convolutional occupancy networks. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. Springer, 523–540.Google Scholar
    65. Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2016. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. arXiv preprint arXiv:1612.00593 (2016).Google Scholar
    66. Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of the 31st International Conference on Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 5105–5114.Google Scholar
    67. Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1511.06434Google Scholar
    68. Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training. (2018).Google Scholar
    69. Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and Aaron Courville. 2019. On the Spectral Bias of Neural Networks. In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 5301–5310. https://proceedings.mlr.press/v97/rahaman19a.htmlGoogle Scholar
    70. Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J. Black. 2018. Generating 3D faces using Convolutional Mesh Autoencoders. In European Conference on Computer Vision (ECCV). 725–741. http://coma.is.tue.mpg.de/Google Scholar
    71. Ryan Schmidt and Brian Wyvill. 2011. ShapeShop: Free-Form 3D Design with Implicit Solid Modeling. In Sketch-based Interfaces and Modeling. Springer, 287–312.Google Scholar
    72. Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski. 2006. A comparison and evaluation of multi-view stereo reconstruction algorithms. In 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06), Vol. 1. IEEE, 519–528.Google Scholar
    73. Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation Functions. In Proc. NeurIPS.Google Scholar
    74. Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural geometric level of detail: Real-time rendering with implicit 3D shapes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11358–11367.Google ScholarCross Ref
    75. Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shi hong Xia. 2018. Variational Autoencoders for Deforming 3D Mesh Models. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), 5841–5850.Google ScholarCross Ref
    76. Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. 2020. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. NeurIPS (2020).Google Scholar
    77. Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. 2017. Learning Shape Abstractions by Assembling Volumetric Primitives. In Computer Vision and Pattern Regognition (CVPR).Google Scholar
    78. Greg Turk and James F. O’Brien. 2005. Shape Transformation Using Variational Implicit Functions. In ACM SIGGRAPH 2005 Courses (Los Angeles, California) (SIGGRAPH ’05). Association for Computing Machinery, New York, NY, USA, 13–es. Google ScholarDigital Library
    79. Mikaela Angelina Uy, Vladimir G. Kim, Minhyuk Sung, Noam Aigerman, Siddhartha Chaudhuri, and Leonidas Guibas. 2021. Joint Learning of 3D Shape Retrieval and Deformation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarCross Ref
    80. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems. 5998–6008.Google Scholar
    81. Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 2019a. 3DN: 3D Deformation Network. In CVPR.Google Scholar
    82. Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. 2019b. Dynamic Graph CNN for Learning on Point Clouds. ACM Trans. Graph. 38, 5, Article 146 (oct 2019), 12 pages. Google ScholarDigital Library
    83. Fangyin Wei, Elena Sizikova, Avneesh Sud, Szymon Rusinkiewicz, and Thomas Funkhouser. 2020. Learning to Infer Semantic Parameters for 3D Shape Editing. In 2020 International Conference on 3D Vision (3DV). 434–442. Google ScholarCross Ref
    84. Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. 2016. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. In Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2016/file/44f683a84163b3523afe57c2e008bc8c-Paper.pdfGoogle Scholar
    85. Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2021. Neural Fields in Visual Computing and Beyond. arXiv preprint arXiv:2111.11426 (2021).Google Scholar
    86. Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan. 2019. Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 4541–4550.Google ScholarCross Ref
    87. Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. 2018. FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation. 206–215. Google ScholarCross Ref
    88. Wang Yifan, Noam Aigerman, Vladimir G. Kim, Siddhartha Chaudhuri, and Olga Sorkine-Hornung. 2020. Neural Cages for Detail-Preserving 3D Deformations. In CVPR.Google Scholar
    89. Kangxue Yin, Zhiqin Chen, Siddhartha Chaudhuri, Matthew Fisher, Vladimir Kim, and Hao Zhang. 2020. COALESCE: Component Assembly by Learning to Synthesize Connections. In Proc. of 3DV.Google ScholarCross Ref
    90. Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. 2020. NeRF++: Analyzing and Improving Neural Radiance Fields. arXiv:2010.07492 (2020).Google Scholar
    91. Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. 2021. Point transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 16259–16268.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: