“Simultaneous acquisition of microscale reflectance and normals” – ACM SIGGRAPH HISTORY ARCHIVES

“Simultaneous acquisition of microscale reflectance and normals”

  • 2016 SA Technical Papers_Nam_Simultaneous Acquisition of Microscale Reflectance and Normals

Conference:


Type(s):


Title:

    Simultaneous acquisition of microscale reflectance and normals

Session/Category Title:   IEEE TVCG Invited Session on Augmented and Virtual Reality


Presenter(s)/Author(s):



Abstract:


    Acquiring microscale reflectance and normals is useful for digital documentation and identification of real-world materials. However, its simultaneous acquisition has rarely been explored due to the difficulties of combining both sources of information at such small scale. In this paper, we capture both spatially-varying material appearance (diffuse, specular and roughness) and normals simultaneously at the microscale resolution. We design and build a microscopic light dome with 374 LED lights over the hemisphere, specifically tailored to the characteristics of microscopic imaging. This allows us to achieve the highest resolution for such combined information among current state-of-the-art acquisition systems. We thoroughly test and characterize our system, and provide microscopic appearance measurements of a wide range of common materials, as well as renderings of novel views to validate the applicability of our captured data. Additional applications such as bi-scale material editing from real-world samples are also demonstrated.

References:


    1. Aittala, M., Weyrich, T., and Lehtinen, J. 2013. Practical SVBRDF capture in the frequency domain. ACM Trans. Graph. 32, 4, 110:1–12.
    2. Aittala, M., Weyrich, T., and Lehtinen, J. 2015. Two-shot SVBRDF capture for stationary materials. ACM Trans. Graph. 34, 4, 110:1–13.
    3. Alldrin, N., Zickler, T., and Kriegman, D. 2008. Photometric stereo with non-parametric and spatially-varying reflectance. In Proc. IEEE CVPR 2008, 1–8.
    4. Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Proc. ACM SIGGRAPH 2000, 65–74.
    5. Bagher, M. M., Snyder, J., and Nowrouzezahrai, D. 2016. A non-parametric factor microfacet model for isotropic brdfs. ACM Transactions on Graphics (TOG) 35, 5, 159.
    6. Basri, R., Jacobs, D. W., and Kemelmacher, I. 2007. Photometric stereo with general, unknown lighting. Int. J. Comput. Vision 72, 3.
    7. Burns, P. D. 2000. Slanted-edge MTF for digital camera and scanner analysis. In Proc. the Conference on Image Processing, Image Quality, Image Capture Systems (PICS-00), 135–138.
    8. Chen, T., Goesele, M., and Seidel, H.-P. 2006. Mesostructure from specularity. In Proc. IEEE CVPR 2006, 1825–1832.
    9. Chen, G., Dong, Y., Peers, P., Zhang, J., and Tong, X. 2014. Reflectance scanning: estimating shading frame and BRDF with generalized linear light sources. ACM Trans. Graph. 33, 4, 117:1–11.
    10. Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1, 7–24.
    11. Dong, Y., Chen, G., Peers, P., Zhang, J., and Tong, X. 2014. Appearance-from-motion: recovering spatially varying surface reflectance under unknown lighting. ACM Trans. Graph. 33, 6, 193.
    12. Dong, Z., Walter, B., Marschner, S., and Greenberg, D. P. 2015. Predicting appearance from measured microgeometry of metal surfaces. ACM Trans. Graph. 35, 1 (Dec.), 9:1–9:13.
    13. Dorsey, J., Rushmeier, H., and Sillion, F. X. 2007. Digital Modeling of Material Appearance. Morgan Kaufmann, Burlington, MA, USA.
    14. Francken, Y., Cuypers, T., Mertens, T., and Bekaert, P. 2009. Gloss and normal map acquisition of mesostructures using gray codes. In ISVC (2), Springer, vol. 5876 of Lecture Notes in Computer Science, 788–798.
    15. Ghosh, A., Hawkins, T., Peers, P., Frederiksen, S., and Debevec, P. 2008. Practical modeling and acquisition of layered facial reflectance. ACM Trans. Graph. 27, 5, 139.
    16. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2009. Estimating Specular Roughness and Anisotropy from Second Order Spherical Gradient Illumination. Computer Graphics Forum 28.
    17. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. In Computer Graphics Forum, vol. 28, 1161–1170.
    18. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly Polarized Spherical Illumination Reflectometry. ACM Trans. Graph. (Dec.).
    19. Graham, P., Tunwattanapong, B., Busch, J., Yu, X., Jones, A., Debevec, P., and Ghosh, A. 2013. Measurement-based synthesis of facial microgeometry. Computer Graphics Forum 32, 335–344. Cross Ref
    20. Gu, J., Tu, C.-I., Ramamoorthi, R., Belhumeur, P., Matusik, W., and Nayar, S. 2006. Time-varying surface appearance: acquisition, modeling and rendering. ACM Trans. Graph. 25, 3, 762–771.
    21. Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. ACM Trans. Graph. 27, 5, 133.
    22. Holroyd, M., Lawrence, J., and Zickler, T. 2010. A coaxial optical scanner for synchronous acquisition of 3d geometry and surface reflectance. ACM Trans. Graph. 29, 4, 99.
    23. Johnson, M. K., Cole, F., Raj, A., and Adelson, E. H. 2011. Microgeometry capture using an elastomeric sensor. ACM Trans. Graph. 30, 4, 46.
    24. Kim, M. H., and Kautz, J. 2008. Characterization for high dynamic range imaging. Computer Graphics Forum (Proc. EUROGRAPHICS 2008) 27, 2, 691–697.
    25. Kim, M. H., Weyrich, T., and Kautz, J. 2009. Modeling human color perception under extended luminance levels. ACM Trans. Graph. (Proc. SIGGRAPH 2009) 28, 3, 27:1–9.
    26. Kim, M. H., Harvey, T. A., Kittle, D. S., Rushmeier, H., Dorsey, J., Prum, R. O., and Brady, D. J. 2012. 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans. Graph. (Proc. SIGGRAPH 2012) 31, 4, 38:1–11.
    27. Kim, M. H., Rushmeier, H., ffrench, J., Passeri, I., and Tidmarsh, D. 2014. Hyper3d: 3d graphics software for examining cultural artifacts. ACM Journal on Computing and Cultural Heritage 7, 3, 1:1–19.
    28. Kim, M. H. 2010. High-Fidelity Colour Reproduction for High-Dynamic-Range Imaging. Ph.D. Thesis, University College London.
    29. Kotoula, E., and Kyranoudi, M. 2013. Study of ancient greek and roman coins using reflectance transformation imaging. E-Conservation Magazine 25, 74–88.
    30. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25, 3, 735–745.
    31. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 2, 234–257.
    32. Levoy, M., Ng, R., Adams, A., Footer, M., and Horowitz, M. 2006. Light field microscopy. ACM Trans. Graph. 25, 3, 924–934.
    33. Li, Z., and Li, Y. 2011. Microscopic photometric stereo: A dense microstructure 3d measurement method. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, IEEE, 6009–6014.
    34. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Proc. Eurographics Conference on Rendering Techniques, Eurographics Association, 183–194.
    35. Malzbender, T., Gelb, D., and Wolters, H. J. 2001. Polynomial texture maps. In Proc. ACM SIGGRAPH 2001, 519–528.
    36. Marschner, S. R., Westin, S. H., Arbree, A., and Moon, J. T. 2005. Measuring and modeling the appearance of finished wood. ACM Trans. Graph. 24, 3, 727–734.
    37. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Transactions on Graphics 22, 3 (July), 759–769.
    38. Minin, I., and Minin, O. 2016. Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit. Springer, New York.
    39. Morgenstern, T., Bornhoeft, G., and Goerlich, S. 2004. Miniaturized spectroradiometer. Light 2004, JETI Technische Instrumente GmbH, Brno, Jun.
    40. NAG, 2015. The NAG Library, Numerical Algorithms Group. http://www.nag.com/.
    41. Nam, G., and Kim, M. H. 2014. Multispectral photometric stereo for acquiring high-fidelity surface normals. IEEE Computer Graphics and Applications 34, 6, 57–68. Cross Ref
    42. Nayar, S., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination. ACM Trans. on Graphics (Proc. of ACM SIGGRAPH) 25, 3, 935–944.
    43. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental Analysis of BRDF Models. Rendering Techniques 2005, 16.
    44. Ren, P., Wang, J., Snyder, J., Tong, X., and Guo, B. 2011. Pocket reflectometry. ACM Trans. Graph. 30, 4, 45:1–10.
    45. Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. JOSA 57, 9, 1105–1112. Cross Ref
    46. Tunwattanapong, B., Fyffe, G., Graham, P., Busch, J., Yu, X., Ghosh, A., and Debevec, P. 2013. Acquiring reflectance and shape from continuous spherical harmonic illumination. ACM Trans. Graph. 32, 4, 109:1–12.
    47. Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. 2007. Microfacet models for refraction through rough surfaces. In Proc. Eurographics, 195–206.
    48. Wang, J., and Dana, K. J. 2006. Relief texture from specularities. IEEE Trans. PAMI 28, 3, 446–457.
    49. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27, 3, 41:1–10.
    50. Weyrich, T., Lawrence, J., Lensch, H., Rusinkiewicz, S., and Zickler, T. 2008. Principles of appearance acquisition and representation. Foundations and Trends in Computer Graphics and Vision 4, 2, 75–191.
    51. Wu, H., Dorsey, J., and Rushmeier, H. 2011. Physically-based interactive bi-scale material design. ACM Trans. Graph. 30 (Dec.), 145:1–10.
    52. Zhang, Z. Y. 2000. A flexible new technique for camera calibration. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 11 (Nov.), 1330–1334.
    53. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2011. Building volumetric appearance models of fabric using micro CT imaging. ACM Trans. Graph. 30, 4, 44:1–10.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org