“Simple quad domains for field aligned mesh parametrization” – ACM SIGGRAPH HISTORY ARCHIVES

“Simple quad domains for field aligned mesh parametrization”

  • 2011-SA-Technical-Paper_Tarini_Simple-Quad-Domains-for-Field-Aligned-Mesh-Parametrization

Conference:


Type(s):


Title:

    Simple quad domains for field aligned mesh parametrization

Session/Category Title:   Quads and Friends


Presenter(s)/Author(s):



Abstract:


    We present a method for the global parametrization of meshes that preserves alignment to a cross field in input while obtaining a parametric domain made of few coarse axis-aligned rectangular patches, which form an abstract base complex without T-junctions. The method is based on the topological simplification of the cross field in input, followed by global smoothing.

References:


    1. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 1–10. Google ScholarDigital Library
    2. Bommes, D., Lempfer, T., and Kobbelt, L. 2011. Global structure optimization of quadrilateral meshes. Computer Graphics Forum 30, 2, 375–384.Google ScholarCross Ref
    3. Chen, G., Mischaikow, K., Laramee, R. S., and Zhang, E. 2008. Efficient morse decompositions of vector fields. IEEE Trans. on Vis. and Comp. Graph. 14, 848–862. Google ScholarDigital Library
    4. Daniels, J., Silva, C., Shepherd, J., and Cohen, E. 2008. Quadrilateral mesh simplification. ACM Trans. Graph. 27, 5, 148:1–148:9. Google ScholarDigital Library
    5. Daniels, J., Silva, C. T., and Cohen, E. 2009. Semiregular quadrilateral-only remeshing from simplified base domains. Computer Graphics Forum 28, 5, 1427–1435. Google ScholarDigital Library
    6. Delmarcelle, T., and Hesselink, L. 1994. The topology of symmetric, second-order tensor fields. In VIS ’94: Proceedings of the conference on Visualization ’94, 140–147. Google ScholarDigital Library
    7. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057–1066. Google ScholarDigital Library
    8. Eppstein, D., Goodrich, M., Kim, E., and Tamstorf, R. 2008. Motorcycle graphs: Canonical quad mesh partitioning. Computer Graphics Forum 27, 5 (July), 1477–1486. Google ScholarDigital Library
    9. Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. In SIGGRAPH, ACM, T. Appolloni, Ed., 355–361. Google ScholarDigital Library
    10. Hormann, K., and Greiner, G. 2000. MIPS: An efficient global parametrization method. In Curve and Surface Design: Saint-Malo 1999, Innovations in Appl. Math. Vanderbilt Univ. Press, 153–162.Google Scholar
    11. Hormann, K., Polthier, K., and Sheffer, A. 2008. Mesh parameterization: Theory and practice. In SIGGRAPH Asia 2008 Course Notes, ACM Press, Singapore, no. 11, 1–81. Google ScholarDigital Library
    12. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. 2008. Spectral quadrangulation with orientation and alignment control. ACM Trans. Graph. 27, 5, 147. Google ScholarDigital Library
    13. Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350–357. Google ScholarDigital Library
    14. Klberer, F., Nieser, M., and Polthier, K. 2007. Quadcover – surface parameterization using branched coverings. Computer Graphics Forum 26, 3, 375–384.Google ScholarCross Ref
    15. Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. Maps: Multiresolution adaptive parameterization of surfaces. Comp. Graph. Proc., 95–104. Google ScholarDigital Library
    16. Lin, J., Jin, X., Fan, Z., and Wang, C. 2008. Automatic polycube-maps. In Proc. of the 5th Int. Conf. on Advances in geometric modeling and processing, Springer-Verlag, 3–16. Google ScholarDigital Library
    17. Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. 2010. Feature-aligned t-meshes. In ACM SIGGRAPH 2010 papers, ACM, New York, NY, USA, SIGGRAPH ’10, 117:1–117:11. Google ScholarDigital Library
    18. Pietroni, N., Tarini, M., and Cignoni, P. 2010. Almost isometric mesh parameterization through abstract domains. IEEE Trans. on Visualization and Comp. Graphics 16, 4, 621–635. Google ScholarDigital Library
    19. Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460–1485. Google ScholarDigital Library
    20. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2, 1–13. Google ScholarDigital Library
    21. Sander, P. V., Wood, Z. J., Gortler, S. J., Snyder, J., and Hoppe, H. 2003. Multi-chart geometry images. In Symp. on Geom. Proc., Eurographics Association, vol. 43 of ACM Internat. Conf, Proc. Series, 146–155. Google ScholarDigital Library
    22. Tarini, M., Hormann, K., Cignoni, P., and Montani, C. 2004. Polycube-maps. In ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA, SIGGRAPH ’04, 853–860. Google ScholarDigital Library
    23. Tricoche, X., Scheuermann, G., and Hagen, H. 2001. Continuous topology simplification of planar vector fields. In IEEE Visualization. Google ScholarDigital Library
    24. Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. A wave-based anisotropic quadrangulation method. In ACM SIGGRAPH 2010 papers, ACM, New York, NY, USA, SIGGRAPH ’10, 118:1–118:8. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org