“Selective guided sampling with complete light transport paths”
Conference:
Type(s):
Title:
- Selective guided sampling with complete light transport paths
Session/Category Title: Beyond light transport
Presenter(s)/Author(s):
Moderator(s):
Abstract:
Finding good global importance sampling strategies for Monte Carlo light transport is challenging. While estimators using local methods (such as BSDF sampling or next event estimation) often work well in the majority of a scene, small regions in path space can be sampled insufficiently (e.g. a reflected caustic). We propose a novel data-driven guided sampling method which selectively adapts to such problematic regions and complements the unguided estimator. It is based on complete transport paths, i.e. is able to resolve the correlation due to BSDFs and free flight distances in participating media. It is conceptually simple and places anisotropic truncated Gaussian distributions around guide paths to reconstruct a continuous probability density function (guided PDF). Guide paths are iteratively sampled from the guided as well as the unguided PDF and only recorded if they cause high variance in the current estimator. While plain Monte Carlo samples paths independently and Markov chain-based methods perturb a single current sample, we determine the reconstruction kernels by a set of neighbouring paths. This enables local exploration of the integrand without detailed balance constraints or the need for analytic derivatives. We show that our method can decompose the path space into a region that is well sampled by the unguided estimator and one that is handled by the new guided sampler. In realistic scenarios, we show 4× speedups over the unguided sampler.
References:
1. Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. 2010. Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society 72, 3 (2010), 269–342.Google ScholarCross Ref
2. Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. 2017. Reversible Jump Metropolis Light Transport Using Inverse Mappings. ACM Trans. on Graphics (Proc. SIGGRAPH) 37, 1, Article 1 (2017), 12 pages. Google ScholarDigital Library
3. O. Cappé, R. Douc, A. Guillin, J.-M. Marin, and C. P. Robert. 2008. Adaptive Importance Sampling in General Mixture Classes. Statistics and Computing 18, 4 (2008), 447–559. Google ScholarDigital Library
4. O. Cappé, A. Guillin, J.-M. Marin, and C. Robert. 2004. Population Monte Carlo. Journal of Computational and Graphical Statistics 13, 4 (2004), 907–929.Google ScholarCross Ref
5. Subrahmanyan Chandrasekar. 1960. Radiative Transfer. Dover Publications Inc. ISBN 0-486-60590-6.Google Scholar
6. N. Chopin, P. E. Jacob, and O. Papaspiliopoulos. 2011. SMC2: an efficient algorithm for sequential analysis of state-space models. ArXiv e-prints (Jan. 2011). arXiv:stat.CO/1101.1528Google Scholar
7. David Cline, Justin Talbot, and Parris K. Egbert. 2005. Energy Redistribution Path Tracing. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3 (2005), 1186–1195. Google ScholarDigital Library
8. K. Dahm and A. Keller. 2017a. Learning Light Transport the Reinforced Way. ArXiv e-prints (Jan. 2017). arXiv:cs.LG/1701.07403Google Scholar
9. K. Dahm and A. Keller. 2017b. Machine Learning and Integral Equations. ArXiv e-prints (Dec. 2017). arXiv:cs.LG/1712.06115Google Scholar
10. Christopher DeCoro, Tim Weyrich, and Szymon Rusinkiewicz. 2010. Density-based Outlier Rejection in Monte Carlo Rendering. Computer Graphics Forum (Proc. Pacific Graphics) 29, 7 (Sept. 2010), 2119–2125.Google Scholar
11. Pierre Del Moral. 1996. Non Linear Filtering: Interacting Particle Solution. Markov Processes and Related Fields 2, 4 (1996), 555–580.Google Scholar
12. R. Douc, A. Guillin, J. . Marin, and C. P. Robert. 2007. Convergence of adaptive mixtures of importance sampling schemes. ArXiv e-prints (Aug. 2007). arXiv:math.ST/0708.0711Google Scholar
13. Shaohua Fan. 2006. Sequential Monte Carlo methods for physically based rendering. Ph.D. Dissertation. Google ScholarDigital Library
14. Luca Fascione, Johannes Hanika, Marcos Fajardo, Per Christensen, Brent Burley, and Brian Green. 2017. Path Tracing in Production – Part 1: Writing Production Renderers. In SIGGRAPH Courses. Google ScholarDigital Library
15. Matteo Fasiolo, Flávio Eler de Melo, and Simon Maskell. 2018. Langevin incremental mixture importance sampling. Statistics and Computing 28, 3 (01 May 2018), 549–561. Google ScholarDigital Library
16. Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek Nowrouzezahrai, and Wojciech Jarosz. 2013. Joint Importance Sampling of Low-Order Volumetric Scattering. ACM Trans. on Graphics 32, 6 (2013), 164. Google ScholarDigital Library
17. Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light Transport Simulation with Vertex Connection and Merging. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 31, 6 (2012), 192:1–192:10. Google ScholarDigital Library
18. Walter Gilks and Carlo Berzuini. 2001. Following a moving target – Monte Carlo inference for dynamic Bayesian models. Journal of the Royal Statistical Society 63, 1 (2001), 127–146.Google ScholarCross Ref
19. Adrien Gruson, Mickaël Ribardière, Martin Šik, Jiří Vorba, Rémi Cozot, Kadi Bouatouch, and Jaroslav Křivánek. 2016. A Spatial Target Function for Metropolis Photon Tracing. ACM Trans. on Graphics (Proc. SIGGRAPH) 36, 1 (Nov. 2016), 4:1–4:13. Google ScholarDigital Library
20. Jerry Jinfeng Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. 2018. Primary Sample Space Path Guiding. In Eurographics Symposium on Rendering – Experimental Ideas & Implementations, Wenzel Jakob and Toshiya Hachisuka (Eds.). The Eurographics Association.Google Scholar
21. Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg Humphreys, Matthias Zwicker, and Henrik Wann Jensen. 2008. Multidimensional Adaptive Sampling and Reconstruction for Ray Tracing. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3 (Aug. 2008), 33:1–33:10. Google ScholarDigital Library
22. Toshiya Hachisuka and Henrik Wann Jensen. 2011. Robust Adaptive Photon Tracing Using Photon Path Visibility. ACM Trans. on Graphics 30, 5, Article 114 (Oct. 2011), 11 pages. Google ScholarDigital Library
23. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A Path Space Extension for Robust Light Transport Simulation. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 31, 6 (2012), 191:1–191:10. Google ScholarDigital Library
24. Johannes Hanika, Anton Kaplanyan, and Carsten Dachsbacher. 2015. Improved Half Vector Space Light Transport. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 34, 4 (June 2015), 65–74.Google Scholar
25. W Keith Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1 (1970), 97–109.Google ScholarCross Ref
26. Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016. Product Importance Sampling for Light Transport Path Guiding. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering) 35, 4 (2016), 67–77.Google Scholar
27. Heinrich Hey and Werner Purgathofer. 2002. Importance sampling with hemi-spherical particle footprints. In Proceedings of the 18th Spring Conference on Computer Graphics. 107–114. Google ScholarDigital Library
28. Wenzel Jakob. 2013. Light transport on path-space manifolds. Ph.D. Dissertation. Cornell University.Google Scholar
29. Wenzel Jakob and Steve Marschner. 2012. Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport. ACM Trans. on Graphics (Proc. SIGGRAPH) 31, 4 (July 2012), 58:1–58:13. Google ScholarDigital Library
30. Wenzel Jakob, Christian Regg, and Wojciech Jarosz. 2011. Progressive Expectation-Maximization for Hierarchical Volumetric Photon Mapping. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 3, 4 (July 2011), 1287–1297. Google ScholarDigital Library
31. Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. In Proc. Eurographics Workshop on Rendering. 326–335.Google ScholarCross Ref
32. James T. Kajiya. 1986. The rendering equation. Computer Graphics (Proc. SIGGRAPH) (1986), 143–150. Google ScholarDigital Library
33. Anton Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 33, 4 (2014), 1–13. Google ScholarDigital Library
34. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm. Computer Graphics Forum 21, 3 (2002), 531–540.Google ScholarCross Ref
35. Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-Domain Path Tracing. ACM Trans. on Graphics (Proc. SIGGRAPH) 34, 4 (2015), 123:1–123:13. Google ScholarDigital Library
36. David Kirk and James Arvo. 1991. Unbiased sampling techniques for images synthesis. Computer Graphics (Proc. SIGGRAPH) 25, 4 (1991). Google ScholarDigital Library
37. Claude Knaus and Matthias Zwicker. 2011. Progressive Photon Mapping: A Probabilistic Approach. ACM Trans. on Graphics 30, 3, Article 25 (May 2011), 13 pages. Google ScholarDigital Library
38. Thomas Kollig and Alexander Keller. 2002a. Efficient Bidirectional Path Tracing by Randomized Quasi-Monte Carlo Integration. In In Proc. Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer Berlin Heidelberg, Berlin, Heidelberg, 290–305.Google Scholar
39. Thomas Kollig and Alexander Keller. 2002b. Efcient Multidimensional Sampling. Computer Graphics Forum (Proc. of Eurographics) 21, 3 (2002), 557–563.Google ScholarCross Ref
40. Christopher Kulla and Marcos Fajardo. 2011. Importance Sampling of Area Lights in Participating Media. In SIGGRAPH Talks. 55:1–55:1. Google ScholarDigital Library
41. Jaroslav Křivánek and Eugene d’Eon. 2014. A Zero-variance-based Sampling Scheme for Monte Carlo Subsurface Scattering. In SIGGRAPH Talks. 66:1–66:1. Google ScholarDigital Library
42. Yu-Chi Lai, Shao Hua Fan, Stephen Chenney, and Charcle Dyer. 2007. Photorealistic Image Rendering with Population Monte Carlo Energy Redistribution. In Proc. Eurographics Workshop on Rendering. The Eurographics Association, 287–295. Google ScholarDigital Library
43. Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Durand. 2015. Anisotropic Gaussian Mutations for Metropolis Light Transport through Hessian-Hamiltonian Dynamics. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 34, 6 (Nov. 2015), 209:1–209:13. Google ScholarDigital Library
44. Johannes Meng, Johannes Hanika, and Carsten Dachsbacher. 2016. Improving the Dwivedi Sampling Scheme. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering) 35, 4 (June 2016), 37–44.Google Scholar
45. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. 1953. Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21, 6 (1953), 1087–1092.Google ScholarCross Ref
46. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 36, 4 (June 2017), 91–100. Google ScholarDigital Library
47. Hisanari Otsu, Anton S. Kaplanyan, Johannes Hanika, Carsten Dachsbacher, and Toshiya Hachisuka. 2017. Fusing State Spaces for Markov Chain Monte Carlo Rendering. ACM Trans. on Graphics (Proc. SIGGRAPH) 36, 4, Article 74 (2017), 10 pages. Google ScholarDigital Library
48. Jacopo Pantaleoni. 2017. Charted Metropolis Light Transport. ACM Trans. on Graphics (Proc. SIGGRAPH) 36, 4, Article 75 (2017), 14 pages. Google ScholarDigital Library
49. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2017. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann. Google ScholarDigital Library
50. Ilya Sobol. 1994. A Primer for the Monte Carlo Method. CRC Press.Google Scholar
51. Ben Spencer and Mark W. Jones. 2013. Progressive Photon Relaxation. ACM Trans. on Graphics 32, 1, Article 7 (Feb. 2013), 11 pages. Google ScholarDigital Library
52. Eric Veach. 1998. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. Stanford University. AAI9837162. Google ScholarDigital Library
53. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 33, 4 (Aug. 2014), 101:1–101:11. Google ScholarDigital Library
54. Jiří Vorba and Jaroslav Křivánek. 2016. Adjoint-Driven Russian Roulette and Splitting in Light Transport Simulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 35, 4 (July 2016), 1–11. Google ScholarDigital Library
55. Martin Šik, Hisanari Otsu, Toshiya Hachisuka, and Jaroslav Křivánek. 2016. Robust Light Transport Simulation via Metropolised Bidirectional Estimators. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 35, 6 (Nov. 2016), 245:1–245:12. Google ScholarDigital Library
56. Pascal Weber, Johannes Hanika, and Carsten Dachsbacher. 2017. Multiple Vertex Next Event Estimation for Lighting in dense, forward-scattering Media. Computer Graphics Forum (Proceedings of Eurographics) (April 2017). Google ScholarDigital Library
57. Tobias Zirr, Johannes Hanika, and Carsten Dachsbacher. 2018. Reweighting firefly samples for improved finite-sample Monte Carlo estimates. Computer Graphics Forum 37, 6 (2018), 410–421.Google ScholarCross Ref


