“Scalable fluid simulation using anisotropic turbulence particles”
Conference:
Type(s):
Title:
- Scalable fluid simulation using anisotropic turbulence particles
Session/Category Title: Fluids and flows
Presenter(s)/Author(s):
Moderator(s):
Abstract:
It is usually difficult to resolve the fine details of turbulent flows, especially when targeting real-time applications. We present a novel, scalable turbulence method that uses a realistic energy model and an efficient particle representation that allows for the accurate and robust simulation of small-scale detail. We compute transport of turbulent energy using a complete two-equation k-ε model with accurate production terms that allows us to capture anisotropic turbulence effects, which integrate smoothly into the base flow. We only require a very low grid resolution to resolve the underlying base flow. As we offload complexity from the fluid solver to the particle system, we can control the detail of the simulation easily by adjusting the number of particles, without changing the large scale behavior. In addition, no computations are wasted on areas that are not visible. We demonstrate that due to the design of our algorithm it is highly suitable for massively parallel architectures, and is able to generate detailed turbulent simulations with millions of particles at high framerates.
References:
1. Bridson, R., Houriham, J., and Nordenstam, M. 2007. Curl-noise for procedural fluid flow. ACM SIGGRAPH papers 26, 3, Article 46. Google ScholarDigital Library
2. Bridson, R. 2008. Fluid Simulation for Computer Graphics. A K Peters. Google ScholarDigital Library
3. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 377–384. Google ScholarDigital Library
4. Cohen, J., Tariq, S., and Green, S. 2010. Interactive fluid-particle simulation using translating eulerian grids. In Proceedings of the 2010 SIGGRAPH Symposium on Interactive 3D Graphics and Games. Google ScholarDigital Library
5. Cook, R., and DeRose, T. 2005. Wavelet noise. In Proceedings of ACM SIGGRAPH 2005, vol. 25. Google ScholarDigital Library
6. Crane, K., Tariq, S., and Llamas, I. 2007. GPU Gems 3. ch. Real-time Simulation and Rendering of 3D Fluids.Google Scholar
7. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics 183, 83–116. Google ScholarDigital Library
8. Feldman, B. E., O’Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. In Proceedings of ACM SIGGRAPH. Google ScholarDigital Library
9. Frisch, U. 1995. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.Google ScholarCross Ref
10. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH 2004) 23, 3, 463–468. Google ScholarDigital Library
11. Hong, J., and Kim, C. 2003. Animation of bubbles in liquid. Proceedings of Eurographics 2003 22, 3.Google Scholar
12. Horvath, C., and Geiger, W. 2009. Directable, high-resolution simulation of fire on the gpu. ACM SIGGRAPH papers. Google ScholarDigital Library
13. Ikits, M., Kniss, J., Lefohn, A., and Hanson, C. 2004. GPU Gems: Programming techniques for real-time Graphics.Google Scholar
14. Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 805–811. Google ScholarDigital Library
15. Kim, B., Liu, Y., Llamas, I., and Rossignac, J. 2005. Flow-fixer: Using BFECC for fluid simulation. In Proceedings of Eurographics Workshop on Natural Phenomena. Google ScholarCross Ref
16. Kim, D., young Song, O., and Ko, H.-S. 2008. A semi-lagrangian cip fluid solver without dimensional splitting. Comput. Graph. Forum (Proc. Eurographics) 27, 2, 467–475.Google ScholarCross Ref
17. Kim, T., Thuerey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid simulation. ACM SIGGRAPH Papers 27, 3 (Aug), Article 6. Google ScholarDigital Library
18. Lamorlette, A., and Foster, N. 2002. Structural modeling of flames for a production environment. In Proceedings of ACM SIGGRAPH. Google ScholarDigital Library
19. Launder, B. E., and Sharma, D. B. 1974. Applications of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 1031–138.Google ScholarCross Ref
20. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. Proceedings of ACM SIGGRAPH, 457–462. Google ScholarDigital Library
21. Molemaker, J., Cohen, J. M., Patel, S., and Noh, J. 2008. Low viscosity flow simulations for animation. In ACM SIGGRAPH / Eurographics Symp. on Comp. Anim., 9–18. Google ScholarDigital Library
22. Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-Preserving Integrators for Fluid Animation. ACM SIGGRAPH Papers 28, 3 (Aug), Article 38. Google ScholarDigital Library
23. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. Proceedings of ACM SIGGRAPH Symposium on Computer Animation. Google ScholarDigital Library
24. Naot, D., Shavit, A., and Wolfshtein, M. 1970. Interaction between components of the turbulent velocity correlation tensor due to pressure fluctuations. Israel J. Technol. 8, 259–269.Google Scholar
25. Narain, R., Sewall, J., Carlson, M., and Lin, M. C. 2008. Fast animation of turbulence using energy transport and procedural synthesis. ACM SIGGRAPH Asia papers, Article 166. Google ScholarDigital Library
26. Obukhov, A. 1941. The spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk 32, 22–24.Google Scholar
27. Panchev, S. 1971. Random Functions and Turbulence. Oxford: Pergamon Press.Google Scholar
28. Pfaff, T., Thuerey, N., Selle, A., and Gross, M. 2009. Synthetic turbulence using artificial boundary layers. ACM Transactions on Graphics 28, 5, 121:1–121:10. Google ScholarDigital Library
29. Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
30. Rasmussen, N., Nguyen, D. Q., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. In Proceedings of ACM SIGGRAPH. Google ScholarDigital Library
31. Schechter, H., and Bridson, R. 2008. Evolving sub-grid turbulence for smoke animation. In Proceedings of the 2008 ACM/Eurographics Symposium on Computer Animation. Google ScholarDigital Library
32. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. In Proceedings of SIGGRAPH. Google ScholarDigital Library
33. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. Journal of Scientific Computing. Google ScholarDigital Library
34. Smith, O. K. 1961. Eigenvalues of a symmetric 3 x 3 matrix. Comm. of the ACM 4. Google ScholarDigital Library
35. Spalart, P. R., and Rumsey, C. L. 2007. Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA Journal 45, 10.Google ScholarCross Ref
36. Stam, J., and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In Proceedings of ACM SIGGRAPH. Google ScholarDigital Library
37. Stam, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH. Google ScholarDigital Library
38. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular Bases for Fluid Dynamics. ACM SIGGRAPH Papers 28 (Aug), Article 39. Google ScholarDigital Library
39. Wilcox, D. C. 1993. Turbulence modelling for CFD. DCW Industries.Google Scholar
40. Yu, Q., Neyret, F., Bruneton, E., and Holzschuch, N. 2009. Scalable real-time animation of rivers. Comput. Graph. Forum 28, 2, 239–248.Google ScholarCross Ref
41. Zhao, Y., Yuan, Z., and Chen, F. 2010. Enhancing fluid animation with adaptive, controllable and intermittent turbulence. ACM Eurographics. Google ScholarDigital Library
42. Zhu, Y., and Bridson, R. 2005. Animating sand as fluid. ACM SIGGRAPH papers. Google ScholarDigital Library


