“Robust light transport simulation via metropolised bidirectional estimators” – ACM SIGGRAPH HISTORY ARCHIVES

“Robust light transport simulation via metropolised bidirectional estimators”

  • 2016 SA Technical Papers_Šik_Robust Light Transport Simulation via Metropolised Bidirectional Estimators

Conference:


Type(s):


Title:

    Robust light transport simulation via metropolised bidirectional estimators

Session/Category Title:   All About Sampling


Presenter(s)/Author(s):



Abstract:


    Efficiently simulating light transport in various scenes with a single algorithm is a difficult and important problem in computer graphics. Two major issues have been shown to hinder the efficiency of the existing solutions: light transport due to multiple highly glossy or specular interactions, and scenes with complex visibility between the camera and light sources. While recent bidirectional path sampling methods such as vertex connection and merging/unified path sampling (VCM/UPS) efficiently deal with highly glossy or specular transport, they tend to perform poorly in scenes with complex visibility. On the other hand, Markov chain Monte Carlo (MCMC) methods have been able to show some excellent results in scenes with complex visibility, but they behave unpredictably in scenes with glossy or specular surfaces due to their fundamental issue of sample correlation. In this paper, we show how to fuse the underlying key ideas behind VCM/UPS and MCMC into a single, efficient light transport solution. Our algorithm is specifically designed to retain the advantages of both approaches, while alleviating their limitations. Our experiments show that the algorithm can efficiently render scenes with both highly glossy or specular materials and complex visibility, without compromising the performance in simpler cases.

References:


    1. Atchadé, Y. F., Roberts, G. O., and Rosenthal, J. S. 2010. Towards optimal scaling of Metropolis-coupled Markov chain Monte Carlo. Statistics and Computing 21, 4, 555–568.
    2. Bashford-Rogers, T., Debattista, K., and Chalmers, A. 2012. A significance cache for accelerating global illumination. Computer Graphics Forum 31, 6, 1837–51.
    3. Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. 2011. Handbook of Markov Chain Monte Carlo. Chapman and Hall/CRC.
    4. Chen, J., Wang, B., and Yong, J.-H. 2011. Improved stochastic progressive photon mapping with metropolis sampling. Comput. Graph. Forum (EGSR 2011) 30, 4.
    5. Cline, D., Talbot, J., and Egbert, P. 2005. Energy redistribution path tracing. ACM Trans. Graph. (SIGGRAPH 2005) 24, 3.
    6. Dachsbacher, C., Křivánek, J., Hašan, M., Arbree, A., Walter, B., and Novák, J. 2014. Scalable realistic rendering with many-light methods. Comput. Graph. Forum 33, 1.
    7. Fan, S., Chenney, S., and Lai, Y.-c. 2005. Metropolis photon sampling with optional user guidance. In Eurographics Symposium on Rendering (EGSR ’05), 127–138.
    8. Georgiev, I., Křivánek, J., Davidovič, T., and Slusallek, P. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. (SIGGRAPH Asia ’12) 31, 6.
    9. Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Trans. Graph. (SIGGRAPH Asia 2009) 28, 5.
    10. Hachisuka, T., and Jensen, H. W. 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph. 30, 5.
    11. Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. Graph. (SIGGRAPH Asia ’08) 27, 5.
    12. Hachisuka, T., Pantaleoni, J., and Jensen, H. W. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. (SIGGRAPH Asia ’12) 31, 6.
    13. Hachisuka, T., Kaplanyan, A. S., and Dachsbacher, C. 2014. Multiplexed Metropolis light transport. ACM Trans. Graph. (SIGGRAPH 2014) 33, 4 (July), 100:1–100:10.
    14. Hanika, J., Kaplanyan, A., and Dachsbacher, C. 2015. Improved half vector space light transport. Comput. Graph. Forum (EGSR 2015) 34, 4.
    15. Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1, 97–109. Cross Ref
    16. Hoberock, J., and Hart, J. C. 2010. Arbitrary importance functions for Metropolis light transport. Comput. Graph. Forum 29, 6, 1993–2003. Cross Ref
    17. Jakob, W., and Marschner, S. 2012. Manifold exploration: A Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph. 31, 4.
    18. Jakob, W., 2010. Mitsuba renderer. http://mitsuba-renderer.org.
    19. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P.-P., and Zwicker, M. 2011. Progressive photon beams. ACM Trans. Graph. (SIGGRAPH Asia 2011) 30, 6.
    20. Jensen, H. W. 1995. Importance driven path tracing using the photon map. In Eurographics Workshop Rendering, 326–335. Cross Ref
    21. Jensen, H. W. 1996. Global illumination using photon maps. In Eurographics Workshop on Rendering, Springer-Verlag, 21–30.
    22. Kaplanyan, A. S., and Dachsbacher, C. 2013. Path space regularization for holistic and robust light transport. Comput. Graph. Forum (Eurographics 2013) 32, 2, 63–72.
    23. Kelemen, C., Szirmay-Kalos, L., Antal, G., and Csonka, F. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Comp. Graph. Forum (Eurographics 2002) 21, 3, 531–540.
    24. Kitaoka, S., Kitamura, Y., and Kishino, F. 2009. Replica exchange light transport. Computer Graphics Forum 28, 8. Cross Ref
    25. Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 3.
    26. Křivánek, J., Georgiev, I., Hachisuka, T., Vévoda, P., Šik, M., Nowrouzezahrai, D., and Jarosz, W. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph. (SIGGRAPH 2014) 33, 4.
    27. Křivánek, J., Keller, A., Georgiev, I., Kaplanyan, A., Fajardo, M., Meyer, M., Nahmias, J.-D., Karlík, O., and Canada, J. 2014. Recent advances in light transport simulation: Some theory and a lot of practice. In ACM SIGGRAPH 2014 Courses.
    28. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Proc. of Compugraphics 93.
    29. Li, T.-M., Lehtinen, J., Ramamoorthi, R., Jakob, W., and Durand, F. 2015. Anisotropic Gaussian mutations for Metropolis light transport through Hessian-Hamiltonian dynamics. ACM Trans. Graph. (SIGGRAPH Asia 2015) 34, 6.
    30. Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, 11–22.
    31. Popov, S., Ramamoorthi, R., Durand, F., and Drettakis, G. 2015. Probabilistic connections for bidirectional path tracing. Computer Graphics Forum (Proc. of EGSR) 34, 4.
    32. Segovia, B., Iehl, J.-C., and Péroche, B. 2007. Metropolis instant radiosity. Comput. Graph. Forum (Eurographics 2007) 26, 3, 425–434.
    33. Swendsen, R. H., and Wang, J.-S. 1986. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607–2609. Cross Ref
    34. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Proc. Eurographics Rendering Workshop.
    35. Veach, E., and Guibas, L. J. 1995. Optimally combining sampling techniques for Monte Carlo rendering. In SIGGRAPH ’95.
    36. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In SIGGRAPH ’97.
    37. Veach, E. 1997. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford University.
    38. Vorba, J., Karlík, O., Šik, M., Ritschel, T., and Křivánek, J. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Trans. Graph. (SIG-GRAPH ’14) 33, 4.
    39. Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, C., and Yoon, S.-E. 2015. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Computer Graphics Forum (Proceedings of Eurographics) 34, 2 (May), 667–681.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org