“Multi-phase fluid simulations using regional level sets”
Conference:
Type(s):
Title:
- Multi-phase fluid simulations using regional level sets
Session/Category Title: Fluids and flows
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We address the problem of Multi-Phase (or Many-Phase) Fluid simulations. We propose to use the regional level set (RLS) that can handle a large number of regions and materials, and hence, is appropriate for simulations of many immiscible materials. Towards this goal, we improve the interpolation of the RLS, and develop the regional level set graph (RLSG), which registers connected components and their contacts, and tracks their properties such as region volumes, film life times, and film material types, as regions evolve, merge, split, or are squeezed into films. Using RLSG’s tracking feature, we generate particles from tiny regions or rupturing films.
References:
1. Bridson, R. 2008. Fluid Simulation for Computer Graphics. A K Peters, ISBN 978-1-56881-326-4. Google ScholarDigital Library
2. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 29. Google ScholarDigital Library
3. Cleary, P. W., Pyo, S. H., Prakash, M., and Koo, B. K. 2007. Bubbling and frothing liquids. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 26. Google ScholarDigital Library
4. Darles, E., Crespin, B., and Ghazanfarpour, D. 2007. Accelerating and enhancing rendering of realistic ocean scenes. In Proceedings of WSCG’2007, Plzen, Czech Republic.Google Scholar
5. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. In ACM SIGGRAPH. Google ScholarDigital Library
6. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In ACM SIGGRAPH, 15–22. Google ScholarDigital Library
7. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical Models and Image Processing 58, 5, 471–483. Google ScholarDigital Library
8. Greenwood, S., and House, D. 2004. Better with bubbles: Enhancing the visual realism of simulated fluid. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 287–296. Google ScholarDigital Library
9. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. In ACM SIGGRAPH. Google ScholarDigital Library
10. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. In ACM SIGGRAPH. Google ScholarDigital Library
11. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., and Kim, C.-H. 2008. Bubbles alive. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 27. Google ScholarDigital Library
12. Kang, M., Fedkiw, R. P., and Liu, X.-D. 2000. A boundary condition capturing method for multiphase incompressible flow. Journal of Scientific Computing 15, 3 (Sep). Google ScholarDigital Library
13. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 26. Google ScholarDigital Library
14. Kim, D., young Song, O., and Kim, H.-S. 2009. Stretching and wiggling liquids. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 28. Google ScholarDigital Library
15. Kück, H. Vogelgsang, C., and Greiner, G. 2002. Simulation and rendering of liquid foams. In Proceedings of Graphics Interface, 81–88.Google Scholar
16. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 25. Google ScholarDigital Library
17. Losasso, F., Talton, J. O., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled sph and particle level set fluid simulation. IEEE Transactions on Visualization and Computer Graphics 14, 797–804. Google ScholarDigital Library
18. Mihalef, V., Metaxas, D., and Sussman, M. 2009. Simulation of two-phase flow with sub-scale droplet and bubble effects. In Eurographics.Google Scholar
19. Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-preserving integrators for fluid animation. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 28. Google ScholarDigital Library
20. Muller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of SIGGRAPH Symposium on Computer Animation, 154–159. Google ScholarDigital Library
21. Osher, S. J., and Fedkiw, R. P. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, ISBN 0-387-95482-1.Google Scholar
22. Sin, F., Bargteil, A., and Hodgins, J. 2009. A point-based method for animating incompressible flow. In ACM Siggraph/Eurographics Symposium in Computer Animation. Google ScholarDigital Library
23. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible sph. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 28. Google ScholarDigital Library
24. Stam, J. 1999. Stable fluids. In ACM SIGGRAPH, 121–128. Google ScholarDigital Library
25. Thurey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 29. Google ScholarDigital Library
26. Vese, L. A., and Chan, T. F. 2002. A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision 50, 3, 271–293. Google ScholarDigital Library
27. Wojtan, C., Thurey, N., M. Gross, and Turk, G. 2009. Deforming meshes that split and merge. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 28. Google ScholarDigital Library
28. Wojtan, C., Thurey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Transactions on Graphics (In Proc. of SIGGRAPH) 29. Google ScholarDigital Library
29. Zheng, W., Yong, Y.-H., and Paul, J.-C. 2006. Simulation of bubbles. In ACM Siggraph/Eurographics Symposium in Computer Animation. Google ScholarDigital Library


