“Liquid surface tracking with error compensation” by Bojsen-Hansen and Wojtan

  • ©

Conference:


Type(s):


Title:

    Liquid surface tracking with error compensation

Session/Category Title:   Voxels & Liquids


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Our work concerns the combination of an Eulerian liquid simulation with a high-resolution surface tracker (e.g. the level set method or a Lagrangian triangle mesh). The naive application of a high-resolution surface tracker to a low-resolution velocity field can produce many visually disturbing physical and topological artifacts that limit their use in practice. We address these problems by defining an error function which compares the current state of the surface tracker to the set of physically valid surface states. By reducing this error with a gradient descent technique, we introduce a novel physics-based surface fairing method. Similarly, by treating this error function as a potential energy, we derive a new surface correction force that mimics the vortex sheet equations. We demonstrate our results with both level set and mesh-based surface trackers.

References:


    1. Bargteil, A. W., Goktekin, T. G., O’brien, J. F., and Strain, J. A. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Transactions on Graphics (TOG) 25, 1, 19–38. Google ScholarDigital Library
    2. Bojsen-Hansen, M. 2011. A Hybrid Mesh-Grid Approach for Efficient Large Body Water Simulation. Master’s thesis, Aarhus University.Google Scholar
    3. Bridson, R. 2008. Fluid Simulation for Computer Graphics. AK Peters. Google ScholarDigital Library
    4. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM Journal on Scientific Computing 31, 4, 2472–2493. Google ScholarDigital Library
    5. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 47:1–47:9. Google ScholarDigital Library
    6. Brochu, T., Keeler, T., and Bridson, R. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 87–95. Google ScholarDigital Library
    7. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Transactions on Graphics (SIGGRAPH) 21, 3, 736–744. Google ScholarDigital Library
    8. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proceedings of FEDSM, vol. 3, 4th.Google Scholar
    9. Goktekin, T., Bargteil, A., and O’Brien, J. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics (SIGGRAPH) 23, 3, 463–468. Google ScholarDigital Library
    10. Heo, N., and Ko, H.-S. 2010. Detail-preserving fully-eulerian interface tracking framework. ACM Transactions on Graphics (SIGGRAPH Asia) 29, 6, 176:1–176:8. Google ScholarDigital Library
    11. Hirt, C., and Nichols, B. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics 39, 1, 201–225.Google ScholarCross Ref
    12. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Transactions on Graphics (SIGGRAPH) 24, 3, 915–920. Google ScholarDigital Library
    13. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Transactions on Graphics (SIGGRAPH) 26, 3, 98:1–98:10. Google ScholarDigital Library
    14. Kim, D., Song, O.-y., and Ko, H.-S. 2009. Stretching and wiggling liquids. ACM Transactions on Graphics (SIGGRAPH Asia) 28, 5, 120:1–120:7. Google ScholarDigital Library
    15. Kim, D., Lee, S. W., young Song, O., and Ko, H.-S. 2012. Baroclinic turbulence with varying density and temperature. IEEE Transactions on Visualization and Computer Graphics 18, 1488–1495. Google ScholarDigital Library
    16. Lentine, M., Zheng, W., and Fedkiw, R. 2010. A novel algorithm for incompressible flow using only a coarse grid projection. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 114:1–114:9. Google ScholarDigital Library
    17. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Transactions on Graphics (SIGGRAPH) 23, 3, 457–462. Google ScholarDigital Library
    18. McAdams, A., Sifakis, E., and Teran, J. 2010. A parallel multigrid poisson solver for fluids simulation on large grids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 65–74. Google ScholarDigital Library
    19. Museth, K. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM Transactions on Graphics (to appear) 32, 3. Google ScholarDigital Library
    20. Osher, S., and Fedkiw, R. 2003. Level set methods and dynamic implicit surfaces, vol. 153. Springer.Google Scholar
    21. Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 261–270. Google ScholarDigital Library
    22. Pfaff, T., Thuerey, N., Selle, A., and Gross, M. 2009. Synthetic turbulence using artificial boundary layers. ACM Transactions on Graphics (SIGGRAPH Asia) 28, 5, 121:1–121:10. Google ScholarDigital Library
    23. Pfaff, T., Thuerey, N., and Gross, M. 2012. Lagrangian vortex sheets for animating fluids. ACM Transactions on Graphics (SIGGRAPH) 31, 4, 112:1–112:8. Google ScholarDigital Library
    24. Pozrikidis, C. 2000. Theoretical and computational aspects of the self-induced motion of three-dimensional vortex sheets. Journal of Fluid Mechanics 425, 335–366.Google ScholarCross Ref
    25. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics (SIGGRAPH) 24, 3, 910–914. Google ScholarDigital Library
    26. Stock, M., Dahm, W., and Tryggvason, G. 2008. Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method. Journal of Computational Physics 227, 21, 9021–9043. Google ScholarDigital Library
    27. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 48:1–48:10. Google ScholarDigital Library
    28. Williams, B. 2008. Fluid surface reconstruction from particles. Master’s thesis, The University Of British Columbia.Google Scholar
    29. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Transactions on Graphics (SIGGRAPH) 27, 3, 47:1–47:8. Google ScholarDigital Library
    30. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Transactions on Graphics (SIGGRAPH) 28, 3, 76:1–76:10. Google ScholarDigital Library
    31. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 50:1–50:8. Google ScholarDigital Library
    32. Wojtan, C., Müller-Fischer, M., and Brochu, T. 2011. Liquid simulation with mesh-based surface tracking. In ACM SIGGRAPH 2011 Courses. Google ScholarDigital Library
    33. Yu, J., and Turk, G. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 217–225. Google ScholarDigital Library
    34. Yu, J., Wojtan, C., Turk, G., and Yap, C. 2012. Explicit mesh surfaces for particle based fluids. Computer Graphics Forum (Eurographics) 31, 2, 815–824. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: