“Inverse bi-scale material design” by Wu, Dorsey and Rushmeier – ACM SIGGRAPH HISTORY ARCHIVES

“Inverse bi-scale material design” by Wu, Dorsey and Rushmeier

  • 2013 SA Technical Papers_Wu_Inverse Bi-scale Material Design

Conference:


Type(s):


Title:

    Inverse bi-scale material design

Session/Category Title:   Light & Sound


Presenter(s)/Author(s):



Abstract:


    One major shortcoming of existing bi-scale material design systems is the lack of support for inverse design: there is no way to directly edit the large-scale appearance and then rapidly solve for the small-scale details that approximate that look. Prior work is either too slow to provide quick feedback, or limited in the types of small-scale details that can be handled. We present a novel computational framework for inverse bi-scale material design. The key idea is to convert the challenging inverse appearance computation into efficient search in two precomputed large libraries: one including a wide range of measured and analytical materials, and the other procedurally generated and height-map-based geometries. We demonstrate a variety of editing operations, including finding visually equivalent details that produce similar large-scale appearance, which can be useful in applications such as physical fabrication of materials.

References:


    1. Ashikmin, M., Premože, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Proc. of SIGGRAPH 2000, 65–74.
    2. Ben-Artzi, A., Overbeck, R., and Ramamoorthi, R. 2006. Real-time BRDF editing in complex lighting. In Proc. of SIGGRAPH 2006, 945–954.
    3. Brodatz, P. 1999. Textures: A Photographic Album for Artists and Designers. Dover Publications, Aug.
    4. Bruneton, E., and Neyret, F. 2012. A survey of nonlinear prefiltering methods for efficient and accurate surface shading. IEEE Trans. Vis. Comput. Graph. 18, 2 (Feb.), 242–260.
    5. Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1 (January), 7–24.
    6. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (July), 62:1–62:10.
    7. Dorsey, J., Rushmeier, H., and Sillion, F. 2007. Digital Modeling of Material Appearance. Morgan Kaufmann Publishers Inc.
    8. Drineas, P., Mahoney, M. W., and Muthukrishnan, S. 2008. Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications 30, 2 (Sept.), 844–881.
    9. Ershov, S., Durikovic, R., Kolchin, K., and Myszkowski, K. 2004. Reverse engineering approach to appearance-based design of metallic and pearlescent paints. Vis. Comput. 20 (November), 586–600.
    10. Gondek, J. S., Meyer, G. W., and Newman, J. G. 1994. Wavelength dependent reflectance functions. In Proc. of SIGGRAPH 94, 213–220.
    11. Green, P., Kautz, J., Matusik, W., and Durand, F. 2006. View-dependent precomputed light transport using nonlinear gaussian function approximations. In Proc. of I3D 2006, 7–14.
    12. Halko, N., Martinsson, P. G., and Tropp, J. A. 2011. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review 53, 2 (May), 217–288.
    13. Han, C., Sun, B., Ramamoorthi, R., and Grinspun, E. 2007. Frequency domain normal map filtering. ACM Trans. Graph. 26, 3 (July), 28:1–28:11.
    14. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 4 (July), 61:1–61:10.
    15. Hays, J., and Efros, A. A. 2007. Scene completion using millions of photographs. ACM Trans. Graph. 26, 3 (July).
    16. Iwasaki, K., Dobashi, Y., and Nishita, T. 2012. Interactive bi-scale editing of highly glossy materials. ACM Trans. Graph. 31, 6 (Nov.), 144:1–144:7.
    17. Kurt, M., Szirmay-Kalos, L., and Křivánek, J. 2010. An anisotropic BRDF model for fitting and Monte Carlo rendering. SIGGRAPH Comput. Graph. 44, 1 (Feb.), 3:1–3:15.
    18. Lan, Y., Dong, Y., Pellacini, F., and Tong, X. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. 32, 4 (July), 145:1–145:12.
    19. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. In Proc. of SIGGRAPH 2006, ACM, 735–745.
    20. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3 (June), 20:1–20:11.
    21. Marschner, S. R., Westin, S. H., Lafortune, E. P. F., Torrance, K. E., and Greenberg, D. P. 1999. Image-based BRDF measurement including human skin. In Proc. of EGWR’99, 131–144.
    22. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graph. 22, 3 (July), 759–769.
    23. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. on Graph. 28, 5 (Dec.), 128:1–128:9.
    24. Mayang. 2013. Mayang’s Free Texture Library http://www.mayang.com/textures/.
    25. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. In Proc. of EGSR’05, 117–126.
    26. Oren, M., and Nayar, S. K. 1994. Generalization of Lambert’s reflectance model. In Proc. of SIGGRAPH 94, 239–246.
    27. Pellacini, F., and Lawrence, J. 2007. AppWand: editing measured materials using appearance-driven optimization. ACM Trans. on Graph. 26, 3 (July), 54:1–54:9.
    28. Ramamoorthi, R., and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In Proc. of SIGGRAPH 2001, ACM, New York, NY, USA, 117–128.
    29. Romeiro, F., and Zickler, T. 2010. Blind reflectometry. In Proc. of ECCV’10, Springer-Verlag, Berlin, Heidelberg, ECCV’10, 45–58.
    30. Rusinkiewicz, S. M. 1998. A new change of variables for efficient BRDF representation. In Proc. of EGWR’98, 11–22.
    31. Wang, C.-P., Snavely, N., and Marschner, S. 2011. Estimating dual-scale properties of glossy surfaces from step-edge lighting. ACM Trans. Graph. 30, 6 (Dec.), 172:1–172:12.
    32. Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In Proc. of SIGGRAPH 92, 255–264.
    33. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3 (July), 32:1–32:6.
    34. Wu, H., Dorsey, J., and Rushmeier, H. 2011. Physically-based interactive bi-scale material design. ACM Trans. Graph. 30, 6 (Dec.), 145:1–145:10.
    35. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2011. Building volumetric appearance models of fabric using micro CT imaging. ACM Trans. Graph. 30, 4 (Aug.), 44:1–44:10.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org