“Interactive Visualization of Atmospheric Effects for Celestial Bodies” by Costa, Bock, Emmart, Hansen, Ynnerman, et al. … – ACM SIGGRAPH HISTORY ARCHIVES

“Interactive Visualization of Atmospheric Effects for Celestial Bodies” by Costa, Bock, Emmart, Hansen, Ynnerman, et al. …

  • ©

Conference:


Type(s):


Interest Area:


    Research / Education and Scientific Visualization

Title:

    Interactive Visualization of Atmospheric Effects for Celestial Bodies

Session/Category Title:   TVCG Session on Data Visualization


Presenter(s)/Author(s):



Abstract:


    We present an atmospheric model tailored for the interactive visualization of planetary surfaces. As the exploration of the solar system is progressing with increasingly accurate missions and instruments, the faithful visualization of planetary environments is gaining increasing interest in space research, mission planning, and science communication and education. Atmospheric effects are crucial in data analysis and to provide contextual information for planetary data. Our model correctly accounts for the non-linear path of the light inside the atmosphere (in Earth’s case), the light absorption effects by molecules and dust particles, such as the ozone layer and the Martian dust, and a wavelength-dependent phase function for Mie scattering. The mode focuses on interactivity, versatility, and customization, and a comprehensive set of interactive controls make it possible to adapt its appearance dynamically. We demonstrate our results using Earth and Mars as examples. However, it can be readily adapted for the exploration of other atmospheres found on, for example, of exoplanets. For Earth’s atmosphere, we visually compare our results with pictures taken from the International Space Station and against the CIE clear sky model. The Martian atmosphere is reproduced based on available scientific data, feedback from domain experts, and is compared to images taken by the Curiosity rover. The work presented here has been implemented in the OpenSpace system, which enables interactive parameter setting and real-time feedback visualization targeting presentations in a wide range of environments, from immersive dome theaters to virtual reality headsets.

References:


    [1] S. Ansari, S. Del Greco, and B. Hankins. The weather and climate toolkit. AGU Fall Meeting Abstracts, 12 2010.

    [2] U. S. Atmosphere. US standard atmosphere. National Oceanic and Atmospheric Administration, 1976.

    [3] A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles. Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region. Optics Communications, 9(4):432–434, 1973.

    [4] K. Bladin, E. Axelsson, E. Broberg, C. Emmart, P. Ljung, A. Bock, and A. Ynnerman. Globe Browsing: Contextualized Spatio-Temporal Planetary Surface Visualization. IEEE Transactions on Visualization and Computer Graphics, 24(1):802–811, 2017.

    [5] K. Bladin, E. Axelsson, E. Broberg, C. Emmart, P. Ljung, A. Bock, and A. Ynnerman. Globe Browsing: Contextualized Spatio-Temporal Planetary Surface Visualization. IEEE Transactions on Visualization and Computer Graphics, 21(1):802–811, Jan 2018.

    [6] A. Bock, E. Axelsson, J. Costa, G. Payne, M. Acinapura, V. Trakinski, C. Emmart, C. Silva, C. Hansen, and A. Ynnerman. OpenSpace: A System for Astrographics. IEEE Transactions on Visualization and Computer Graphics, pp. 633–642, 2019.

    [7] A. Bock, C. Emmart, M. Kuznetsova, and A. Ynnerman. OpenSpace: Changing the Narrative of Public Disseminations in Astronomical Visualization from What to How. IEEE Computer Graphics and Applications, 38(3):44–57, 2018.

    [8] K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, et al. Measurements of molecular absorption spectra with the sciamachy pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. Journal of Photochemistry and Photobiology A: Chemistry, 157(2-3):167–184, 2003.

    [9] C. F. Bohren and D. R. Huffman. Absorption and scattering of light by small particles. Wiley, 1983.

    [10] E. Bruneton and F. Neyret. Precomputed atmospheric scattering. Computer Graphics Forum, 27(4):1079–1086, 2008.

    [11] A. Bucholtz. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt., 34(15):2765–2773, May 1995.

    [12] S. Chandrasekhar. Radiative transfer. Dover Publications, 1960.

    [13] H. Chen-Chen, S. Perez-Hoyos, and A. S ´ anchez-Lavega. Characterisation ´ of martian dust aerosol phase function from sky radiance measurements by msl engineering cameras. Icarus, 330:16–29, 2019.

    [14] P. Christensen, R. Morris, M. Lane, J. Bandfield, and M. Malin. Global mapping of martian hematite mineral deposits: Remnants of water-driven processes on early Mars. Journal of Geophysical Research: Planets, 106(E10):23873–23885, 2001.

    [15] P. Collienne, R. Wolff, A. Gerndt, and T. Kuhlen. Physically based rendering of the martian atmosphere. Virtuelle und Erweiterte Realitat¨ , 10:97–108, 2013.

    [16] S. Darula and R. Kittler. CIE general sky standard defining luminance distributions. Proceedings eSim, pp. 11–13, 2002.

    [17] K. Ehlers, R. Chakrabarty, and H. Moosmuller. Blue moons and martian ¨ sunsets. Appl. Opt., 53(9):1808–1819, Mar 2014.

    [18] O. Elek and P. Kmoch. Rendering parametrizable planetary atmospheres with multiple scattering in real-time. In Proceedings of the Central European Seminar on Computer Graphics, 2009.

    [19] O. Elek and P. Kmoch. Real-time spectral scattering in large-scale natural participating media. In Proceedings of the 26th Spring Conference on Computer Graphics, pp. 77–84, 2010.

    [20] S. N. Gesellschaft. Verhandlungen der Schweizerischen Naturforschenden Gesellschaft., vol. 1944. Basel :Druck der Schweighauser’schen Officin,, 1944.

    [21] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202:18–27, 2017.

    [22] V. Gorshelev, A. Serdyuchenko, M. Weber, W. Chehade, and J. Burrows. High spectral resolution ozone absorption cross-sections—Part 1: Measurements, data analysis and comparison with previous measurements around 293 K. Atmospheric Measurement Techniques, 7(2):609–624, 2014.

    [23] R. Haberle. The Atmosphere and Climate of Mars. Cambridge Planetary Science. Cambridge University Press, 2017.

    [24] B. Hapke. Bidirectional reflectance spectroscopy: 5. the coherent backscatter opposition effect and anisotropic scattering. Icarus, 157(2):523–534, 2002.

    [25] C. Ho, N. Golshan, and A. Kliore. Radio wave propagation handbook for communication on and around mars. NASA Propagation Handbooks, 2002.

    [26] N. Hoffman, A. J. Preetham, et al. Rendering outdoor light scattering in real time. In Proceedings of Game Developer Conference, p. 499, 2002.

    [27] L. Hosek and A. Wilkie. An analytic model for full spectral sky-dome radiance. ACM Transactions on Graphics, 31(4):95:1–95:9, July 2012.

    [28] H. C. Hulst and H. C. van de Hulst. Light scattering by small particles. Courier Corporation, 1981.

    [29] D. Ityaksov, H. Linnartz, and W. Ubachs. Deep-UV absorption and Rayleigh scattering of carbon dioxide. Chemical Physics Letters, 462(1- 3):31–34, 2008.

    [30] J. T. Kajiya. The rendering equation. In Proceedings of the 13th annual conference on Computer graphics and interactive techniques, pp. 143–150, 1986.

    [31] G. W. Kattawar. A three-parameter analytic phase function for multiple scattering calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 15(9):839–849, 1975.

    [32] H. Keller-Rudek, G. Moortgat, R. Sander, and R. Sorensen. The MPI- ¨ Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth System Science Data, 5(2):365–373, 2013.

    [33] H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sorensen. ¨ The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest. http://satellite.mpic.de/spectral_ atlas/cross_sections/Ozone/O3_Serdyuchenko(2014)_293K_ 213-1100nm(2013%20version).txt. Accessed: 2019-03-20.

    [34] M. Kerker, P. Scheiner, and D. D. Cooke. The range of validity of the Rayleigh and Thomson limits for Lorenz-Mie scattering. Journal of the Optical Society of America, 68(1):135–137, 1978.

    [35] S. Klashed, P. Hemingsson, C. Emmart, M. Cooper, and A. Ynnerman. Uniview – Visualizing the Universe. In Eurographics – Areas Papers. Eurographics Association, 2010.

    [36] R. Kozma. The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2):205 – 226, 2003.

    [37] J. Lampel, D. Pohler, J. Tschritter, U. Frieß, and U. Platt. On the rela- ¨ tive absorption strengths of water vapour in the blue wavelength range. Atmospheric Measurement Techniques, 8(10):4329–4346, 2015.

    [38] K.-N. Liou. An introduction to atmospheric radiation. Elsevier, 2002.

    [39] M. I. Mishchenko. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: A microphysical derivation from statistical electromagnetics. Applied Optics, 41:7114–7134, 2002.

    [40] M. I. Mishchenko. Maxwell’s equations, radiative transfer, and coherent backscattering: A general perspective. Journal of Quantitative Spectroscopy and Radiative Transfer, 101(3):540–555, 2006.

    [41] M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press, 2006.

    [42] C. Morales, T. Oishi, and K. Ikeuchi. Real-time rendering of aerial perspective effect based on turbidity estimation. IPSJ Transactions on Computer Vision and Applications, 9(1):1, 2017.

    [43] C. N. Adams, G. N. Plass, and G. Kattawar. The influence of ozone and aerosols on the brightness and color of the twilight sky. Journal of the Atmospheric Sciences, 31:16621674, 10 1974.

    [44] NASA. Mars fact sheet. https://nssdc.gsfc.nasa.gov/ planetary/factsheet/marsfact.html. Accessed: 2019-03-26.

    [45] T. Nishita, Y. Dobashi, and E. Nakamae. Display of clouds taking into account multiple anisotropic scattering and sky light. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 379–386, 1996.

    [46] T. Nishita, T. Sirai, K. Tadamura, and E. Nakamae. Display of the Earth taking into account atmospheric scattering. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 175–182, 1993.

    [47] S. O’Neil. Real-time atmospheric scattering. https: //www.gamedev.net/articles/programming/graphics/ real-time-atmospheric-scattering-r2093/. Accessed: 2019-03- 08.

    [48] S. O’Neil. Accurate atmospheric scattering. GPU Gems, 2:253–268, 2005.

    [49] R. Penndorf. Tables of the refractive index for standard air and the rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 µ and their application to atmospheric optics. Journal of the Optical Society of America, 47(2):176–182, 1957.

    [50] R. Penndorf. Tables of the refractive index for standard air and the rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 µ and their application to atmospheric optics. Journal of the Optical Society of America, 47(2):176–182, Feb 1957.

    [51] G. W. Petty. A first course in atmospheric radiation. Sundog Pub, 2006.

    [52] K. A. Pickering. The southern limits of the ancient star catalog and the commentary of hipparchos. DIO, 12:3–27, 2002.

    [53] A. J. Preetham, P. Shirley, and B. Smits. A practical analytic model for daylight. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 91–100, 1999.

    [54] R. W. Preisendorfer. Radiative transfer on discrete spaces. Pergamon Press, 1965.

    [55] L. Rayleigh. On the light from the sky, its polarization and colour. Philosophical Magazine, 41:274, 1871.

    [56] K. Riley, D. S. Ebert, M. Kraus, J. Tessendorf, and C. Hansen. Efficient rendering of atmospheric phenomena. In Proceedings of the Fifteenth Eurographics Conference on Rendering Techniques, EGSR’04, pp. 375– 386, 2004.

    [57] A. Sagrista, S. Jordan, T. M ` uller, and F. Sadlo. Gaia Sky: Navigating ¨ the Gaia Catalog. IEEE Transactions on Visualization and Computer Graphics, 25(1):1070–1079, 2019.

    [58] T. Schafhitzel, M. Falk, and T. Ertl. Real-time rendering of planets with atmospheres. WSCG International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, 15:91–98, 2007.

    [59] A. Schneider. the real-time volumetric cloudscapes of horizon: Zero dawn.

    [60] A. Serdyuchenko, V. Gorshelev, M. Weber, W. Chehade, and J. Burrows. High spectral resolution ozone absorption cross-sections–part 2: Temperature dependence. Atmospheric Measurement Techniques, 7(2):625–636, 2014.

    [61] D. Shemansky. CO2 extinction coefficient 1700–3000 A. ˚ Journal of Chemical Physics, 56(4):1582–1587, 1972.

    [62] M. Sneep and W. Ubachs. Direct measurement of the rayleigh scattering cross section in various gases. Journal of Quantitative Spectroscopy and Radiative Transfer, 92(3):293–310, 2005.

    [63] K. Stamnes, G. E. Thomas, and J. J. Stamnes. Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, 2 ed., 2017.

    [64] A. Ynnerman, J. Lowgren, and L. Tibell. Exploranation: A new science ¨ communication paradigm. IEEE Computer Graphics and Applications, 38:13–20, 05 2018.

    [65] A. Ynnerman, T. Rydell, D. Antoine, D. Hughes, A. Persson, and P. Ljung. Interactive visualization of 3D scanned mummies at public venues. Commun. ACM, 59(12):72–81, 2016.

    [66] E. Yusov. Outdoor light scattering sample update. https: //software.intel.com/sites/default/files/blog/473591/ outdoor-light-scattering-update.pdf. Accessed: 2019-03-08.

    [67] G. Zotti, A. Wilkie, and W. Purgathofer. A critical review of the Preetham skylight model. World Society for Computer Graphics Short Communications Papers, 1:23–30, 2007.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org