“Interactive design of 3D-printable robotic creatures” by Megaro, Thomaszewski, Nitti, Hilliges, Gross, et al. … – ACM SIGGRAPH HISTORY ARCHIVES

“Interactive design of 3D-printable robotic creatures” by Megaro, Thomaszewski, Nitti, Hilliges, Gross, et al. …

  • 2015 SA Technical Papers_Megaro_Interactive Design of 3D-Printable Robotic Creatures

Conference:


Type(s):


Title:

    Interactive design of 3D-printable robotic creatures

Session/Category Title:   Fabrication


Presenter(s)/Author(s):



Abstract:


    We present an interactive design system that allows casual users to quickly create 3D-printable robotic creatures. Our approach automates the tedious parts of the design process while providing ample room for customization of morphology, proportions, gait and motion style. The technical core of our framework is an efficient optimization-based solution that generates stable motions for legged robots of arbitrary designs. An intuitive set of editing tools allows the user to interactively explore the space of feasible designs and to study the relationship between morphological features and the resulting motions. Fabrication blueprints are generated automatically such that the robot designs can be manufactured using 3D-printing and off-the-shelf servo motors. We demonstrate the effectiveness of our solution by designing six robotic creatures with a variety of morphological features: two, four or five legs, point or area feet, actuated spines and different proportions. We validate the feasibility of the designs generated with our system through physics simulations and physically-fabricated prototypes.

References:


    1. Auerbach, J., Aydin, D., Maesani, A., Kornatowski, P., Cieslewski, T., Heitz, G., Fernando, P., Loshchilov, I., Daler, L., and Floreano, D. 2014. RoboGen: Robot Generation through Artificial Evolution. In Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, The MIT Press, 136–137.
    2. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. In Proc. of ACM SIGGRAPH ’12.
    3. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-It: Optimizing moment of inertia for spinnable objects. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 33, 4, 96:1–96:10.
    4. Calì, J., Calian, D., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3D-printing of non-assembly, articulated models. In Proc. of ACM SIGGRAPH Asia ’12.
    5. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. In Proc. of ACM SIGGRAPH Asia ’13.
    6. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. In Proc. of ACM SIGGRAPH ’13.
    7. Dimitrov, D., Wieber, P.-B., Ferreau, H., and Diehl, M. 2008. On the implementation of model predictive control for online walking pattern generation. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, 2685–2690.
    8. Gertz, E. M., and Wright, S. J. 2003. Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29, 1, 58–81.
    9. Hecker, C., Raabe, B., Enslow, R. W., DeWeese, J., Maynard, J., and van Prooijen, K. 2008. Real-time motion retargeting to highly varied user-created morphologies. In Proc. of ACM SIGGRAPH ’08.
    10. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., and Yokoi, K. H. K. 2003. Biped walking pattern generation by using preview control of zero-moment point. In in Proceedings of the IEEE International Conference on Robotics and Automation, 1620–1626.
    11. Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. 2014. Creating works-like prototypes of mechanical objects. ACM Transactions on Graphics (Special issue of SIGGRAPH Asia 2014).
    12. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. In Proc. of ACM SIGGRAPH ’11.
    13. Leger, P. C. 1999. Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.
    14. Lipson, H., and Pollack, J. B. 2000. Towards continuously reconfigurable self-designing robotics. In ICRA, IEEE, 1761–1766.
    15. Mastalli, C., Winkler, A., Havoutis, I., Caldwell, D. G., and Semini, C. 2015. On-line and on-board planning and perception for quadrupedal locomotion. In 2015 IEEE International Conference on Technologies for Practical Robot Applications (TEPRA), IEEE.
    16. Mehta, A. M., and Rus, D. 2014. An end-to-end system for designing mechanical structures for print-and-fold robots. In IEEE International Conference on Robotics and Automation (ICRA).
    17. Mehta, A. M., DelPreto, J., Shaya, B., and Rus, D. 2014. Cogeneration of mechanical, electrical, and software designs for printable robots from structural specifications. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
    18. Mordatch, I., Todorov, E., and Popović, Z. 2012. Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31, 4 (July), 43:1–43:8.
    19. Neuhaus, P., Pratt, J., and Johnson, M. 2011. Comprehensive summary of the institute for human and machine cognition’s experience with littledog. International Journal Of Robotics Research 30, 2 (Feb.), 216–235.
    20. ODE, 2007. Open dynamics engine, http://www.ode.org/.
    21. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3d fabrication. In Proc. of ACM SIGGRAPH ’13, 81:1–81:10.
    22. Sims, K. 1994. Evolving virtual creatures. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’94, 15–22.
    23. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. In Proc. of ACM SIGGRAPH ’13.
    24. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. In Proc. of ACM SIGGRAPH ’14.
    25. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. In Proc. of ACM SIGGRAPH ’12.
    26. Umetani, N., Koyama, Y., Schmidt, R., and Igarashi, T. 2014. Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph. 33, 4 (July), 65:1–65:10.
    27. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Trans. Graph. 28, 3 (July), 60:1–60:8.
    28. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. In ACM SIGGRAPH 2009 Papers, ACM, New York, NY, USA, SIGGRAPH ’09, 60:1–60:8.
    29. Wampler, K., Popović, Z., and Popović, J. 2014. Generalizing locomotion style to new animals with inverse optimal regression. ACM Trans. Graph. 33, 4 (July), 49:1–49:11.
    30. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’88, 159–168.
    31. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. In Proc. of ACM SIGGRAPH Asia ’12.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org