“Global parametrization of range image sets” – ACM SIGGRAPH HISTORY ARCHIVES

“Global parametrization of range image sets”

  • 2011-SA-Technical-Paper_Pietroni_Global-Parametrization-of-Range-Image-Set

Conference:


Type(s):


Title:

    Global parametrization of range image sets

Session/Category Title:   3D Capture and Reconstruction


Presenter(s)/Author(s):



Abstract:


    We present a method to globally parameterize a surface represented by height maps over a set of planes (range images). In contrast to other parametrization techniques, we do not start with a manifold mesh. The parametrization we compute defines a manifold structure, it is seamless and globally smooth, can be aligned to geometric features and shows good quality in terms of angle and area preservation, comparable to current parametrization techniques for meshes. Computing such global seamless parametrization makes it possible to perform quad remeshing, texture mapping and texture synthesis and many other types of geometry processing operations. Our approach is based on a formulation of the Poisson equation on a manifold structure defined for the surface by the range images. Construction of such global parametrization requires only a way to project surface data onto a set of planes, and can be applied directly to implicit surfaces, nonmanifold surfaces, very large meshes, and collections of range scans. We demonstrate application of our technique to all these geometry types.

References:


    1. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Comp. Graph. Forum 27, 2, 449–458.Google ScholarCross Ref
    2. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google ScholarDigital Library
    3. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G. 2008. MeshLab: an open-source mesh processing tool. In Sixth Eurographics Italian Chapter Conference, Eurographics, 129–136.Google Scholar
    4. Daniels, J., Silva, C., and Cohen, E. 2009. Semi-regular quadrilateral-only remeshing from simplified base domains. Comp. Graph. Forum 28, 5, 1427–1435. Google ScholarDigital Library
    5. Daniels, J., Silva, C. T., and Cohen, E. 2009. Localized quadrilateral coarsening. Comp. Graph. Forum 28, 5, 1437–1444. Google ScholarDigital Library
    6. Dong, S., Bremer, P., Garland, M., Pascucci, V., and Hart, J. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057–1066. Google ScholarDigital Library
    7. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. In Proc. ACM SGGRAPH, 173–182. Google ScholarDigital Library
    8. Grimm, C., and Hughes, J. 1995. Modeling surfaces of arbitrary topology using manifolds. In Proc. ACM SIGGRAPH, 359–368. Google ScholarDigital Library
    9. Grimm, C., and Hughes, J. 2004. Parameterization using manifolds. International Journal of Shape Modeling 10, 1, 51–82.Google ScholarCross Ref
    10. Grimm, C., and Zorin, D. 2006. Surface modeling and parameterization with manifolds. In ACM SIGGRAPH 2006 Courses, 1–81. Google ScholarDigital Library
    11. Grimm, C. 1996. Modeling Surfaces of Arbitrary Topology using Manifolds. PhD thesis, Brown University. Google ScholarDigital Library
    12. Gu, X., and Yau, S. 2003. Global conformal surface parameterization. In Symposium on Geometry Processing, 127–137. Google ScholarDigital Library
    13. Hormann, K., Lévy, B., and Sheffer, A. 2007. Mesh parameterization: Theory and practice. SIGGRAPH Course Notes. Google ScholarDigital Library
    14. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. 2008. Spectral quadrangulation with orientation and alignment control. In Proc. ACM SIGGRAPH. Google ScholarDigital Library
    15. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface Parameterization using Branched Coverings. Comp. Graph. Forum 26, 3, 375–384.Google ScholarCross Ref
    16. Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350–357. Google ScholarDigital Library
    17. Kovacs, D., Myles, A., and Zorin, D. 2009. Anisotropic harmonic quadrangulation. In Symposium on Geometry Processing 2009 Poster.Google Scholar
    18. Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. In Proc. ACM SIGGRAPH, 95–104. Google ScholarDigital Library
    19. Marinov, M., and Kobbelt, L. 2005. Automatic generation of structure preserving multiresolution models. Comp. Graph. Forum 24, 3, 479–486.Google ScholarCross Ref
    20. Pauly, M., and Gross, M. 2001. Spectral processing of point-sampled geometry. In Proc. ACM SIGGRAPH, 379–386. Google ScholarDigital Library
    21. Pietroni, N., Tarini, M., and Cignoni, P. 2010. Almost isometric mesh parameterization through abstract domains. IEEE Trans. Vis. and Comp. Graph. 16, 4, 621–635. Google ScholarDigital Library
    22. Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460–1485. Google ScholarDigital Library
    23. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Foundations and Trends® in Computer Graphics and Vision 2, 2, 171. Google ScholarDigital Library
    24. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27, 3, 77:1–77:11. Google ScholarDigital Library
    25. Tarini, M., Cignoni, P., and Montani, C. 2006. Ambient occlusion and edge cueing to enhance real time molecular visualization. IEEE Trans. Vis. and Comp. Graph. 12, 6. Google ScholarDigital Library
    26. Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. 2010. Practical quad mesh simplification. Comp. Graph. Forum 29, 2.Google ScholarCross Ref
    27. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Symposium on Geometry Processing, 201–210. Google ScholarDigital Library
    28. Ying, L., and Zorin, D. 2004. A simple manifold-based construction of surfaces of arbitrary smoothness. ACM Trans. Graph. 23, 3, 271–275. Google ScholarDigital Library
    29. Zhang, L., Liu, L., Gotsman, C., and Huang, H. 2010. Mesh reconstruction by meshless denoising and parameterization. Computers & Graphics 34, 3, 198–208. Google ScholarDigital Library
    30. Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. A wave-based anisotropic quadrangulation method. ACM Trans. Graph. 29, 4. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org