“Fast animation of turbulence using energy transport and procedural synthesis”
Conference:
Type(s):
Title:
- Fast animation of turbulence using energy transport and procedural synthesis
Session/Category Title: Physically-based animation
Presenter(s)/Author(s):
Abstract:
We present a novel technique for the animation of turbulent fluids by coupling a procedural turbulence model with a numerical fluid solver to introduce subgrid-scale flow detail. From the large-scale flow simulated by the solver, we model the production and behavior of turbulent energy using a physically motivated energy model. This energy distribution is used to synthesize an incompressible turbulent velocity field, whose features show plausible temporal behavior through a novel Lagrangian approach for advected noise. The synthesized turbulent flow has a dynamical effect on the large-scale flow, and produces visually plausible detailed features on both gaseous and free-surface liquid flows. Our method is an order of magnitude faster than full numerical simulation of equivalent resolution, and requires no manual direction.
References:
1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. Graph 26, 3, 48. Google ScholarDigital Library
2. Angelidis, A., and Neyret, F. 2005. Simulation of smoke based on vortex filament primitives. In ACM SIGGRAPH /Euro-graphics Symposium on Computer Animation, Eurographics Association, Los Angeles, California, D. Terzopoulos and V. Zordan, Eds., 87–96. Google Scholar
3. Brackbill, J. U., and Ruppel, H. M. 1986. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2, 314–343. Google ScholarDigital Library
4. Bridson, R., and Müller-Fischer, M. 2007. Fluid simulation: SIGGRAPH 2007 course notes. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, New York, NY, USA, 1–81. Google Scholar
5. Bridson, R., Houriham, J., and Nordenstam, M. 2007. Curl-noise for procedural fluid flow. ACM Trans. Graph 26, 3, 46. Google ScholarDigital Library
6. Bridson, R. 2007. Fast Poisson disk sampling in arbitrary dimensions. In SIGGRAPH ’07: ACM SIGGRAPH 2007 sketches, ACM, New York, NY, USA, 22. Google Scholar
7. Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Symposium on Computer Animation, Eurographics Association, M. Gleicher and D. Thal-mann, Eds., 219–228. Google ScholarDigital Library
8. Cook, R. L., and DeRose, T. 2005. Wavelet noise. ACM Trans. Graph. 24, 3, 803–811. Google ScholarDigital Library
9. Davidson, P. A. 2004. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
10. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph 26, 1. Google ScholarDigital Library
11. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In SIGGRAPH, 15–22. Google Scholar
12. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In SIGGRAPH, 23–30. Google Scholar
13. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical Models and Image Processing 58, 5, 471–483. Google ScholarDigital Library
14. Frisch, U. 1995. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.Google ScholarCross Ref
15. Kass, M., Lefohn, A., and Owens, J. 2006. Interactive depth of field. Tech. Rep. 06-01, Pixar Animation Studios.Google Scholar
16. Kim, T., and Lin, M. C. 2007. Stable advection-reaction-diffusion with arbitrary anisotropy. Journal of Visualization and Computer Animation 18, 4–5, 329–338. Google Scholar
17. Kim, B., Liu, Y., Llamas, I., and Rossignac, J. 2007. Advections with significantly reduced dissipation and diffusion. IEEE Trans. Vis. Comput. Graph 13, 1, 135–144. Google ScholarDigital Library
18. Kim, D., Song, O.-y., and Ko, H.-S. 2008. A semi-Lagrangian CIP fluid solver without dimensional splitting. Computer Graphics Forum 27, 467–475(9).Google ScholarCross Ref
19. Kim, T., Thürey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid simulation. In SIGGRAPH. Google Scholar
20. Kniss, J., and Hart, D., 2004. Volume effects: modeling smoke, fire, and clouds. Section from ACM SIGGRAPH 2004 courses, Real-Time Volume Graphics, http://www.cs.unm.edu/~jmk/sig04_modeling.ppt.Google Scholar
21. Lamb, H. 1993. Hydrodynamics. University Press.Google Scholar
22. Losasso, F., Fedkiw, R., and Osher, S. 2005. Spatially adaptive techniques for level set methods and incompressible flow. Computers and Fluids 35, 2006.Google Scholar
23. Magnaudet, J. 2003. High-Reynolds-number turbulence in a shear-free boundary layer: revisiting the HuntGraham theory. Journal of Fluid Mechanics 484, 167–196.Google ScholarCross Ref
24. McComb, W. D. 1990. The Physics of Fluid Turbulence. Oxford University Press.Google Scholar
25. Monin, A. S., and Yaglom, A. M. 1971. Statistical Fluid Mechanics. Dover Publications.Google Scholar
26. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Eurographics/SIGGRAPH Symposium on Computer Animation, Eurographics Association, San Diego, California, D. Breen and M. Lin, Eds., 154–159. Google ScholarDigital Library
27. Neyret, F. 2003. Advected textures. In Eurographics/SIGGRAPH Symposium on Computer Animation, Eurographics Association, San Diego, California, D. Breen and M. Lin, Eds., 147–153. Google Scholar
28. Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Los Angeles, California, D. Terzopoulos and V. Zordan, Eds., 261–270. Google Scholar
29. Perlin, K., and Neyret, F. 2001. Flow noise. In Siggraph Technical Sketches and Applications, 187.Google Scholar
30. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A. E., and Whitaker, R. T. 2003. Particle-based simulation of fluids. Comput. Graph. Forum 22, 3, 401–410.Google ScholarCross Ref
31. Schechter, H., and Bridson, R. 2008. Evolving sub-grid turbulence for smoke animation. In Eurographics/SIGGRAPH Symposium on Computer Animation. Google ScholarDigital Library
32. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics 24, 3 (July), 910–914. Google ScholarDigital Library
33. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. Journal of Scientific Computing. (in press). Google Scholar
34. Shinya, M., and Fournier, A. 1992. Stochastic motion – motion under the influence of wind. Computer Graphics Forum 11, 3 (Sept.), 119–128. EG92: Cambridge, UK., Editors: A. Kilgour and L. Kjelldahl.Google ScholarCross Ref
35. Sims, K. 1990. Particle animation and rendering using data parallel computation. In Computer Graphics, Proceedings of Siggraph, ACM, vol. 24, 405–413. Google ScholarCross Ref
36. Stam, J., and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In SIGGRAPH, ACM, 369–376. Google Scholar
37. Stam, J. 1999. Stable fluids. In SIGGRAPH, 121–128. Google Scholar
38. Wejchert, J., and Haumann, D. 1991. Animation aerodynamics. T. W. Sederberg, Ed., vol. 25, 19–22.Google Scholar
39. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, 965–972. Google Scholar


