“Face fixer: compressing polygon meshes with properties” by Isenburg and Snoeyink

  • ©

Conference:


Type(s):


Title:

    Face fixer: compressing polygon meshes with properties

Presenter(s)/Author(s):



Abstract:


    Most schemes to compress the topology of a surface mesh have been developed for the lowest common denominator: triangulated meshes. We propose a scheme that handles the topology of arbitrary polygon meshes. It encodes meshes directly in their polygonal representation and extends to capture face groupings in a natural way. Avoiding the triangulation step we reduce the storage costs for typical polygon models that have group structures and property data.

References:


    1. C. Bajaj, V. Pascucci, and G. Zhuang. Progressive compression and transmission of arbitrary triangular meshes. In Visualization 99, pages 307-316,1999.
    2. D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of arbitrary tri-angular meshes. In Visualization 99 Conference Proceedings, pages 67-72,1999.
    3. M. Deering. Geometry compression. In SIGGRAPH 95, pages 13-20, 1995.
    4. M. Denny and C. Sohler. Encoding a triangulation as a permutation of its point set. In Proc. of 9th Canadian Conf. on Comp. Geom., pages 39-43, 1997.
    5. F. Evans, S. S. Skiena, and A. Varshney. Optimizing triangle strips for fast ren-dering. In Visualization 96 Conference Proceedings, pages 319-326, 1996.
    6. L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi Diagrams. ACM ToG, 4(2):74-123, 1985.
    7. S. Gumhold and W. Strasser. Real time compression of triangle mesh connectiv-ity. In SIGGRAPH 98 Conference Proceedings, pages 133-140,1998.
    8. H. Hoppe. Progressive meshes. In SIGGRAPH 96, pages 99-108, 1996.
    9. M. Isenburg and J. Snoeyink. Mesh collapse compression. In Proceedings of SIBGRAPI 99, Campinas, Brazil, pages 27-28, 1999.
    10. M. Isenburg and J. Snoeyink. Spirale reversi: Reverse decoding of the Edge-breaker encoding. Technical Report TR-99-08, Computer Science, UBC, 1999.
    11. K. Keeler and J. Westbrook. Short encodings of planar graphs and maps. In Dis-crete Applied Mathematics, pages 239-252,1995.
    12. D. King and J. Rossignac. Guaranteed 3.67v bit encoding of planar triangle graphs. In Proc. of 11th Canadian Conf. on Comp. Geom., pages 146-149,1999.
    13. D. King, J. Rossignac, and A. Szymczak. Connectivity compression for irregular quadrilateral meshes. Technical Report TR-99-36,GVU, Georgia Tech, 1999.
    14. D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAMJournal of Com-puting, 12(1):28-35, 1983.
    15. B. Kronrod and C. Gotsman. Efficient coding of non-triangular meshes. In Proc. of 16th Europ. Workshop on Computational Geometry, pages 24-26, 2000.
    16. J. Li, C. C. Kuo, and H. Chen. Mesh connectivity coding by dual graph approach. Contribution Document MPEG98/m3530Tokyo, mar 1998.
    17. R. Parajola and Rossignac. Compressed progressive meshes. Technical Report TR-99-05, GVU, Georgia Tech, 1999.
    18. J. Rossignac. Edgebreaker: Connectivity compressionfor triangle meshes. IEEE Transactions on Visualization and Computer Graphics, 5(1), 1999.
    19. J. Rossignac and A. Szymczak. Wrap&zip: Linear decoding of planar triangle graphs. The Journal of ComputationalGeometry, Theory and Applications, 1999.
    20. J. Snoeyink and M. van Kreveld. Linear-time reconstruction of Delaunay trian-gulations with applications. In Proc. of Europ. Symp. Alg., pages 459-471,1997.
    21. D. M. Y. Sommerville. An Introductionto the Geometry of N Dimensions. Dutton Publications, New York, 1929.
    22. G. Taubin, A. Gu~ eziec, W.P. Horn, and F. Lazarus. Progressive forest split com-pression. In SIGGRAPH 98 Conference Proceedings, pages 123-132, 1998.
    23. G. Taubin, W.P. Horn, F. Lazarus, and J. Rossignac. Geometry coding and VRML. Proceedings of the IEEE, 86(6):1228-1243, 1998.
    24. G. Taubin and J. Rossignac. Geometric compression throughtopological surgery. ACM Transactions on Graphics, 17(2):84-115, 1998.
    25. C. Touma and C. Gotsman. Triangle mesh compression. In Graphics Interface 98 Conference Proceedings, pages 26-34, 1998.
    26. G. Turan. Succinct representations of graphs. Dis. Apl. Math., 8:289-294, 1984.
    27. W.T. Tutte. A census of planar triangulations. Cnd. Jrn. Math., 14:21-38, 1962.
    28. Viewpoint. Premier Catalog (2000 Edition) www.viewpoint.com.
    29. I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compres-sion. Communications of the ACM, 30(6):520-540, 1987.
    30. M. Woo, J. Neider, and T. Davis. Open GL Programming Guide. A.W., 1996.


ACM Digital Library Publication:



Overview Page: