“Consistent shepard interpolation for SPH-based fluid animation” by Reinhardt, Krake, Eberhardt and Weiskopf – ACM SIGGRAPH HISTORY ARCHIVES

“Consistent shepard interpolation for SPH-based fluid animation” by Reinhardt, Krake, Eberhardt and Weiskopf

  • 2019 SA Technical Papers_Reinhardt_Consistent shepard interpolation for SPH-based fluid animation

Conference:


Type(s):


Title:

    Consistent shepard interpolation for SPH-based fluid animation

Session/Category Title:   Fluids Aflow


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a novel technique to correct errors introduced by the discretization of a fluid body when animating it with smoothed particle hydrodynamics (SPH). Our approach is based on the Shepard correction, which reduces the interpolation errors from irregularly spaced data. With Shepard correction, the smoothing kernel function is normalized using the weighted sum of the kernel function values in the neighborhood. To compute the correction factor, densities of neighboring particles are needed, which themselves are computed with the uncorrected kernel. This results in an inconsistent formulation and an error-prone correction of the kernel. As a consequence, the density computation may be inaccurate, thus the pressure forces are erroneous and may cause instabilities in the simulation process. We present a consistent formulation by using the corrected densities to compute the exact kernel correction factor and, thereby, increase the accuracy of the simulation. Employing our method, a smooth density distribution is achieved, i.e., the noise in the density field is reduced by orders of magnitude. To show that our method is independent of the SPH variant, we evaluate our technique on weakly compressible SPH and on divergence-free SPH. Incorporating the corrected density into the correction process, the problem cannot be stated explicitly anymore. We propose an efficient and easy-to-implement algorithm to solve the implicit problem by applying the power method. Additionally, we demonstrate how our model can be applied to improve the density distribution on rigid bodies when using a well-known rigid-fluid coupling approach.

References:


    1. M. P. Tulin A. Colagrossi, M. Landrini. 2001. A Lagrangian meshless method for free-surface flows. In Proceedings of the 4th Numerical Towing Tank Symposium. Google ScholarDigital Library
    2. N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics 31, 4 (2012), 62:1–62:8. Google ScholarDigital Library
    3. S. Band, C. Gissler, M. Ihmsen, J. Cornelis, A. Peer, and M. Teschner. 2018. Pressure boundaries for implicit incompressible SPH. ACM Transactions on Graphics 37, 2 (2018), 14:1–14:11. Google ScholarDigital Library
    4. S. Band, C. Gissler, and M. Teschner. 2017. Moving least squares boundaries for SPH fluids. In Proceedings of the 13th Workshop on Virtual Reality Interactions and Physical Simulations. 21–28. Google ScholarDigital Library
    5. M. Becker and M. Teschner. 2007. Weakly compressible SPH for free surface flows. In Eurographics/SIGGRAPH Symposium on Computer Animation. 209–218. Google ScholarCross Ref
    6. T. Belytschko, Y. Krongauz, J. Dolbow, and C. Gerlach. 1998. On the completeness of meshfree particle methods. International Journal for Numerical Methods in Engineering 43, 5 (1998), 785–819. <785::AID-NME420>3.0.CO;2-9 Google ScholarCross Ref
    7. J. Bender and D. Koschier. 2017. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3 (2017), 1193–1206. Google ScholarDigital Library
    8. J. Bender, D. Koschier, T. Kugelstadt, and M. Weiler. 2018. Turbulent micropolar SPH fluids with foam. IEEE Transactions on Visualization and Computer Graphics 25, 6 (2018), 2284–2295. Google ScholarCross Ref
    9. J. Bonet, S. Kulasegaram, M. X. Rodriguez-Paz, and M. Profit. 2004. Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Computer Methods in Applied Mechanics and Engineering 193, 12 (2004), 1245–1256. Google ScholarCross Ref
    10. J. Bonet and T.-S. L. Lok. 1999. Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering 180, 1 (1999), 97–115. ) 00051-1 Google ScholarCross Ref
    11. S. J. Cummins and M. Rudman. 1999. An SPH projection method. Journal of Computational Physics 152, 2 (1999), 584–607. Google ScholarDigital Library
    12. M. Desbrun and M.-P. Gascuel. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation ’96. 61–76.Google ScholarDigital Library
    13. M. Ellero, M. Serrano, and P. Español. 2007. Incompressible smoothed particle hydrodynamics. Journal of Computational Physics 226 (2007), 1731–1752. Google ScholarDigital Library
    14. F.-J. Fritz, B. Huppert, and W. Willems. 1979. Stochastische Matrizen. Springer.Google Scholar
    15. G. Frobenius. 1912. Über Matrizen aus nicht negativen Elementen. Sitzungsberichte der Preußischen Akademie der Wissenschaften zu Berlin 26 (1912), 456–477. Google ScholarCross Ref
    16. G. C. Ganzenmüller. 2015. An hourglass control algorithm for Lagrangian Smooth Particle Hydrodynamics. Computer Methods in Applied Mechanics and Engineering 286 (2015), 87–106. Google ScholarCross Ref
    17. N. Grenier, M. Antuono, A. Colagrossi, D. Le Touzé, and B. Alessandrini. 2009. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. Journal of Computational Physics 228, 22 (2009), 8380–8393. Google ScholarDigital Library
    18. R. A. Horn and C. R. Johnson. 2012. Matrix Analysis. Cambridge University Press.Google Scholar
    19. M. Huber, S. Reinhardt, D. Weiskopf, and B. Eberhardt. 2015. Evaluation of surface tension models for SPH-based fluid animations using a benchmark test. In Proceedings of Workshop on Virtual Reality Interaction and Physical Simulation. 41–50. Google ScholarCross Ref
    20. M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and M. Teschner. 2014a. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (2014), 426–435. Google ScholarDigital Library
    21. M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner. 2014b. SPH fluids in computer graphics. In EG 2014 – STARs. 21–42. Google ScholarCross Ref
    22. G. R. Johnson and S. R. Beisel. 1996. Normalized smoothing functions for SPH impact computations. International Journal for Numerical Methods in Engineering 39, 16 (1996), 2725–2741. <2725::AID-NME973>3.0.CO;2-9 Google ScholarCross Ref
    23. Y. Krongauz and T. Belytschko. 1996. Enforcement of essential boundary conditions in meshless approximations using finite elements. Computer Methods in Applied Mechanics and Engineering 131, 1 (1996), 133–145. Google ScholarCross Ref
    24. W.-K. Liu, S. Li, and T. Belytschko. 1997. Moving least-square reproducing kernel methods (I) Methodology and convergence. Computer Methods in Applied Mechanics and Engineering 143, 1 (1997), 113–154. Google ScholarCross Ref
    25. R. V. Mises and H. Pollaczek-Geiringer. 1929. Praktische Verfahren der Gleichungsauflösung. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 9, 2 (1929), 152–164. Google ScholarCross Ref
    26. J. J. Monaghan. 1988. An introduction to SPH. Computer Physics Communications 48, 1 (1988), 89–96. Google ScholarCross Ref
    27. J. J. Monaghan. 1992. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics 30, 1 (1992), 543–574. Google ScholarCross Ref
    28. J. J. Monaghan. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 8 (2005), 1703–1759. Google ScholarCross Ref
    29. J. P. Morris. 1996. A study of the stability properties of smooth particle hydrodynamics. Publications of the Astronomical Society of Australia 13, 1 (1996), 97–102. Google ScholarCross Ref
    30. J. P. Morris, P. J. Fox, and Y. Zhu. 1997. Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics 136, 1 (1997), 214–226. Google ScholarDigital Library
    31. P. W. Randles and L. D. Libersky. 1996. Smoothed Particle Hydrodynamics: Some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering 139, 1 (1996), 375–408. Google ScholarCross Ref
    32. H. Schechter and R. Bridson. 2012. Ghost SPH for animating water. ACM Transactions on Graphics 31, 4 (2012), 61:1–61:8. Google ScholarDigital Library
    33. D. Shepard. 1968. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM National Conference. 517–524. Google ScholarDigital Library
    34. B. Solenthaler and R. Pajarola. 2009. Predictive-corrective incompressible SPH. ACM Transactions on Graphics 28, 3 (2009), 40:1–40:6. Google ScholarDigital Library
    35. G. L. Vaughan, T. R. Healy, K. R. Bryan, A. D. Sneyd, and R. M. Gorman. 2008. Completeness, conservation and error in SPH for fluids. International Journal for Numerical Methods in Fluids 56, 1 (2008), 37–62. Google ScholarCross Ref
    36. M. Weiler, D. Koschier, M. Brand, and J. Bender. 2018. A physically consistent implicit viscosity solver for SPH fluids. Computer Graphics Forum 37, 2 (2018), 145–155. Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org