“Compression of motion capture databases” by Arikan

  • ©

Conference:


Type(s):


Title:

    Compression of motion capture databases

Presenter(s)/Author(s):



Abstract:


    We present a lossy compression algorithm for large databases of motion capture data. We approximate short clips of motion using Bezier curves and clustered principal component analysis. This approximation has a smoothing effect on the motion. Contacts with the environment (such as foot strikes) have important detail that needs to be maintained. We compress these environmental contacts using a separate, JPEG like compression algorithm and ensure these contacts are maintained during decompression.Our method can compress 6 hours 34 minutes of human motion capture from 1080 MB data into 35.5 MB with little visible degradation. Compression and decompression is fast: our research implementation can decompress at about 1.2 milliseconds/frame, 7 times faster than real-time (for 120 frames per second animation). Our method also yields smaller compressed representation for the same error or produces smaller error for the same compressed size.

References:


    1. Alexa, M., and Muller, W. 2000. Representing animations by principal components. In Eurographics Computer Animation and Simulation, vol. 19, 411–418.]]Google Scholar
    2. Alexander, R. M. 1991. Optimum timing of muscle activation for simple models of throwing. J. Theor. Biol. 150, 349–372.]]Google ScholarCross Ref
    3. Arikan, O., and Forsyth, D. 2002. Interactive motion generation from examples. In Proceedings of SIGGRAPH 2002, 483–490.]] Google ScholarDigital Library
    4. Arikan, O., Forsyth, D. A., and O’Brien, J. F. 2005. Pushing people around. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer animation, ACM Press, 59–66.]] Google ScholarDigital Library
    5. Chai, J., and Hodgins, J. K. 2005. Performance animation from low-dimensional control signals. Proceedings of SIGGRAPH 2005 24, 3, 686–696.]] Google ScholarDigital Library
    6. Fowlkes, C., Belongie, S., Chung, F., and Malik, J. 2004. Spectral grouping using the nystrom method. In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, 214–225.]] Google ScholarDigital Library
    7. Grochow, K., Martin, S. L., Hertzmann, A., and Popovic;, Z. 2004. Style-based inverse kinematics. Proceedings of SIGGRAPH 2005 23, 3, 522–531.]] Google ScholarDigital Library
    8. Gupta, S., Sengupta, K., and Kassim, A. A. 2002. Compression of dynamic 3d geometry data using iterative closest point algorithm. Comput. Vis. Image Underst. 87, 1–3, 116–130.]] Google ScholarDigital Library
    9. Guskov, I., and Khodakovsky, A. 2004. Wavelet compression of parametrically coherent mesh sequences. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 183–192.]] Google ScholarDigital Library
    10. Harrison, J., Rensink, R. A., and Van De Panne, M. 2004. Obscuring length changes during animated motion. Proceedings of SIGGRAPH 2004 23, 3, 569–573.]] Google ScholarDigital Library
    11. Ibarria, L., and Rossignac, J. 2003. Dynapack: space-time compression of the 3d animations of triangle meshes with fixed connectivity. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, 126–135.]] Google ScholarDigital Library
    12. Ikemoto, L., and Forsyth, D. A. 2004. Enriching a motion collection by transplanting limbs. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 99–108.]] Google ScholarDigital Library
    13. Ikemoto, L., Arikan, O., and Forsyth, D. 2005. Knowing when to put your foot down. In, 13D: Symposium on Interactive 3D Graphics and Games, 49–53.]] Google ScholarDigital Library
    14. James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. Proceedings of SIGGRAPH 2005 24, 3, 399–407.]] Google ScholarDigital Library
    15. Jenkins, O. C., and Mataric, M. J. 2003. Automated derivation of behavior vocabularies for autonomous humanoid motion. In AAMAS ’03: Proceedings of the second international joint conference on Autonomous agents and multiagent systems, 225–232.]] Google ScholarDigital Library
    16. Jpeg, 2000. Jpeg 2000 – http://www.jpeg.org/jpeg2000/index.html.]]Google Scholar
    17. Karni, Z., and Gotsman, C. 2000. Spectral compression of mesh geometry. In Proceedings of SIGGRAPH 2000, 279–286.]] Google ScholarDigital Library
    18. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In Proceedings of SIGGRAPH 2002, 473–482.]] Google ScholarDigital Library
    19. Kovar, L., Gleicher, M., and Schreiner, J. 2002. Footstake cleanup for motion capture editing. In ACM SIGGRAPH Symposium on Computer Animation 2002, 97–104.]] Google ScholarDigital Library
    20. Lee, J., Chai, J., Reitsma, P., Hodgins, J., and Pollard, N. 2002. Interactive control of avatars animated with human motion data. In Proceedings of SIGGRAPH 2002, 491–500.]] Google ScholarDigital Library
    21. Lengyel, J. E. 1999. Compression of time-dependent geometry. In SI3D ’99: Proceedings of the 1999 symposium on Interactive 3D graphics, 89–95.]] Google ScholarDigital Library
    22. Li, Y., Wang, T., and Shum, H. Y. 2002. Motion texture: A two-level statistical model for character motion synthesis. In Proceedings of SIGGRAPH 2002, 465–472.]] Google ScholarDigital Library
    23. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. Proceedings of SIGGRAPH 2003 22, 3, 562–568.]] Google ScholarDigital Library
    24. O’Sullivan, C., Dingliana, J., Giang, T., and Kaiser, M. K. 2003. Evaluating the visual fidelity of physically based animations. Proceedings of SIGGRAPH 2003 22, 3, 527–536.]] Google ScholarDigital Library
    25. Pavlovic, V., Rehg, J. M., and Maccormick, J. 2000. Learning switching linear models of human motion. In NIPS, 981–987.]]Google Scholar
    26. Pullen, K., and Bregler, C. 2002. Motion capture assisted animation: Texturing and synthesis. In Proceedings of SIGGRAPH 2002, 501–508.]] Google ScholarDigital Library
    27. Reitsma, P. S. A., and Pollard, N. S. 2003. Perceptual metrics for character animation: sensitivity to errors in ballistic motion. Proceedings of SIGGRAPH 2003 22, 3, 537–542.]] Google ScholarDigital Library
    28. Ren, L., Patrick, A., Efros, A. A., Hodgins, J. K., and Rehg, J. M. 2005. A data-driven approach to quantifying natural human motion. Proceedings of SIGGRAPH 2005 24, 3, 1090–1097.]] Google ScholarDigital Library
    29. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multi-dimensional motion interpolation. IEEE Computer Graphics and Applications 18, 5, 32–41.]] Google ScholarDigital Library
    30. Rossignac, J. 1999. Edgebreaker. Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 5, 1 (1), 47–61.]] Google ScholarDigital Library
    31. Safonova, A., and Hodgins, J. K. 2005. Analyzing the physical correctness of interpolated human motion. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, 171–180.]] Google ScholarDigital Library
    32. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. Proceedings of SIGGRAPH 2004 23, 3, 514–521.]] Google ScholarDigital Library
    33. Salomon, D. 2000. Data Compression: The Complete Reference, second ed.]] Google ScholarDigital Library
    34. Sattler, M., Sarlette, R., and Klein, R. 2005. Simple and efficient compression of animation sequences. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, 209–217.]] Google ScholarDigital Library
    35. Shi, J., and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8, 888–905.]] Google ScholarDigital Library
    36. Sloan, P.-P. J., Charles F. Rose, I., and Cohen, M. F. 2001. Shape by example. In SI3D ’01: Proceedings of the 2001 symposium on Interactive 3D graphics, 135–143.]] Google ScholarDigital Library
    37. Sloan, P.-P., Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for precomputed radiance transfer. Proceedings of SIGGRAPH 2003 22, 3, 382–391.]] Google ScholarDigital Library
    38. Tolani, D., Goswami, A., and Badler, N. I. 2000. Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical models 62, 5, 353–388.]]Google Scholar
    39. Vecchio, D. D., Murray, R. M., and Perona, P. 2003. Classification of human motion into dynamics based primitives with application to drawing tasks. In Proc. of European Control Conference.]]Google Scholar
    40. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: least-squares approximation techniques for skin animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, 129–138.]] Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: