“Bi-scale appearance fabrication” by Lan, Dong, Pellacini and Tong

  • ©

Conference:


Type(s):


Title:

    Bi-scale appearance fabrication

Session/Category Title:   Appearance Fabrication


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Surfaces in the real world exhibit complex appearance due to spatial variations in both their reflectance and local shading frames (i.e. the local coordinate system defined by the normal and tangent direction). For opaque surfaces, existing fabrication solutions can reproduce well only the spatial variations of isotropic reflectance. In this paper, we present a system for fabricating surfaces with desired spatially-varying reflectance, including anisotropic ones, and local shading frames. We approximate each input reflectance, rotated by its local frame, as a small patch of oriented facets coated with isotropic glossy inks. By assigning different ink combinations to facets with different orientations, this bi-scale material can reproduce a wider variety of reflectance than the printer gamut, including anisotropic materials. By orienting the facets appropriately, we control the local shading frame. We propose an algorithm to automatically determine the optimal facets orientations and ink combinations that best approximate a given input appearance, while obeying manufacturing constraints on both geometry and ink gamut. We fabricate the resulting surface with commercially available hardware, a 3D printer to fabricate the facets and a flatbed UV printer to coat them with inks. We validate our method by fabricating a variety of isotropic and anisotropic materials with rich variations in normals and tangents.

References:


    1. Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM Trans. Graph. 29, 4 (July), 60:1–60:7. Google ScholarDigital Library
    2. Ashikmin, M., Premože, S., and Shirley, P. 2000. A microfacet-based brdf generator. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’00, 65–74. Google ScholarDigital Library
    3. Bermano, A., Baran, I., Alexa, M., and Matusk, W. 2012. Shadowpix: Multiple images from self shadowing. Comp. Graph. Forum 31, 2 (May), 593–602. Google ScholarDigital Library
    4. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29 (July), 62:1–62:10. Google ScholarDigital Library
    5. Dong, Y., Tong, X., Pellacini, F., and Guo, B. 2011. Appgen: interactive material modeling from a single image. ACM, New York, NY, USA, vol. 30, 146:1–146:10. Google ScholarDigital Library
    6. Dong, Y., Tong, X., Pellacini, F., and Guo, B. 2012. Printing spatially-varying reflectance for reproducing hdr images. ACM Trans. Graph. 31, 4 (July), 40:1–40:7. Google ScholarDigital Library
    7. Dorsey, J., Rushmeier, H., and Sillion, F. 2008. Digital Modeling of Material Appearance. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarDigital Library
    8. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Trans. Graph. 22, 3 (July), 749–758. Google ScholarDigital Library
    9. Gondek, J. S., Meyer, G. W., and Newman, J. G. 1994. Wavelength dependent reflectance functions. In Proceedings of the 21st annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’94, 213–220. Google ScholarDigital Library
    10. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29 (July), 61:1–61:10. Google ScholarDigital Library
    11. Heidrich, W., Daubert, K., Kautz, J., and Seidel, H.-P. 2000. Illuminating micro geometry based on precomputed visibility. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’00, 455–464. Google ScholarDigital Library
    12. Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. ACM Trans. Graph. 27, 5 (Dec.), 133:1–133:9. Google ScholarDigital Library
    13. Holroyd, M., Baran, I., Lawrence, J., and Matusik, W. 2011. Computing and fabricating multilayer models. ACM Trans. Graph. 30 (Dec.), 187:1–187:8. Google ScholarDigital Library
    14. Hullin, M. B., Lensch, Hendrik P. A. and Raskar, R., Seidel, H.-P., and Ihrke, I. 2011. Dynamic display of BRDFs. In Computer Graphics Forum (Proc. EUROGRAPHICS), Blackwell, Llandudno, UK, O. Deussen and M. Chen, Eds., Eurographics, 475–483.Google Scholar
    15. Iwasaki, K., Dobashi, Y., and Nishita, T. 2012. Interactive bi-scale editing of highly glossy materials. ACM Trans. Graph. 31, 6 (Nov.), 144:1–144:7. Google ScholarDigital Library
    16. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25, 3 (July), 735–745. Google ScholarDigital Library
    17. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and James, D. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3 (June), 20:1–20:11. Google ScholarDigital Library
    18. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. 28 (December), 128:1–128:9. Google ScholarDigital Library
    19. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. Eurographics Symposium on Rendering 2005, 117–226. Google ScholarDigital Library
    20. Nocedal, J. 1980. Updating Quasi-Newton Matrices with Limited Storage. Mathematics of Computation 35, 151, 773–782.Google Scholar
    21. Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., and Jarosz, W. 2012. The magic lens: refractive steganography. ACM Trans. Graph. 31, 6 (Nov.), 186:1–186:10. Google ScholarDigital Library
    22. Pereira, T., and Rusinkiewicz, S. 2012. Gamut mapping spatially varying reflectance with an improved BRDF similarity metric. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 31, 4 (June). Google ScholarDigital Library
    23. Regg, C., Rusinkiewicz, S., Matusik, W., and Gross, M. 2010. Computational highlight holography. ACM Trans. Graph. 29, 6 (Dec.), 170:1–170:12. Google ScholarDigital Library
    24. Toler-Franklin, C., Finkelstein, A., and Rusinkiewicz, S. 2007. Illustration of complex real-world objects using images with normals. In International Symposium on Non-Photorealistic Animation and Rendering (NPAR). Google ScholarDigital Library
    25. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27, 3 (Aug.), 41:1–41:9. Google ScholarDigital Library
    26. Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. SIGGRAPH Comput. Graph. 26, 2 (July), 255–264. Google ScholarDigital Library
    27. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3 (July), 32:1–32:6. Google ScholarDigital Library
    28. Wu, H., Dorsey, J., and Rushmeier, H. 2009. Characteristic point maps. In Proceedings of the Twentieth Eurographics conference on Rendering, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, EGSR’09, 1227–1236. Google ScholarDigital Library
    29. Wu, H., Dorsey, J., and Rushmeier, H. 2011. Physically-based interactive bi-scale material design. ACM Trans. Graph. 30 (Dec.), 145:1–145:10. Google ScholarDigital Library
    30. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2011. Building volumetric appearance models of fabric using micro ct imaging. ACM Trans. Graph. 30, 4 (July), 44:1–44:10. Google ScholarDigital Library
    31. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2012. Structure-aware synthesis for predictive woven fabric appearance. ACM Trans. Graph. 31, 4 (July), 75:1–75:10. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: