“Anisotropic blue noise sampling” – ACM SIGGRAPH HISTORY ARCHIVES

“Anisotropic blue noise sampling”

  • 2010 SA Technical Paper: Li_Anisotropic blue noise sampling

Conference:


Type(s):


Title:

    Anisotropic blue noise sampling

Session/Category Title:   Sampling & filtering


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Blue noise sampling is widely employed for a variety of imaging, geometry, and rendering applications. However, existing research so far has focused mainly on isotropic sampling, and challenges remain for the anisotropic scenario both in sample generation and quality verification. We present anisotropic blue noise sampling to address these issues. On the generation side, we extend dart throwing and relaxation, the two classical methods for isotropic blue noise sampling, for the anisotropic setting, while ensuring both high-quality results and efficient computation. On the verification side, although Fourier spectrum analysis has been one of the most powerful and widely adopted tools, so far it has been applied only to uniform isotropic samples. We introduce approaches based on warping and sphere sampling that allow us to extend Fourier spectrum analysis for adaptive and/or anisotropic samples; thus, we can detect problems in alternative anisotropic sampling techniques that were not yet found via prior verification. We present several applications of our technique, including stippling, visualization, surface texturing, and object distribution.

References:


    1. Alliez, P., Meyer, M., and Desbrun, M. 2002. Interactive geometry remeshing. In SIGGRAPH ’02, 347–354. Google ScholarDigital Library
    2. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. In SIGGRAPH ’03, 485–493. Google ScholarDigital Library
    3. Balzer, M., Schlomer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd’s method. In SIGGRAPH ’09, 86:1–8. Google ScholarDigital Library
    4. Balzer, M. 2009. Capacity-constrained Voronoi diagrams in continuous spaces. In International Symposium on Voronoi Diagrams in Science and Engineering, 79–88. Google ScholarDigital Library
    5. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel Poisson disk sampling with spectrum analysis on surfaces. In SIGGRAPH Asia ’10, to appear. Google ScholarDigital Library
    6. Cabral, B., and Leedom, L. C. 1993. Imaging vector fields using line integral convolution. In SIGGRAPH ’93, 263–270. Google ScholarDigital Library
    7. Cline, D., Jeschke, S., Razdan, A., White, K., and Wonka, P. 2009. Dart throwing on surfaces. In EGSR ’09, 1217–1226. Google ScholarDigital Library
    8. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Transactions on Graphics 5, 1, 51–72. Google ScholarDigital Library
    9. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. Computer Graphics Forum 21, 3, 209–218.Google ScholarCross Ref
    10. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. In SIGGRAPH ’06, 503–508. Google ScholarDigital Library
    11. Feng, L., Hotz, I., Hamann, B., and Joy, K. 2008. Anisotropic noise samples. IEEE Transactions on Visualization and Computer Graphics 14, 2, 342–354. Google ScholarDigital Library
    12. Fritzsche, L.-P., Hellwig, H., Hiller, S., and Deussen, O. 2005. Interactive design of authentic looking mosaics using Voronoi structures. In In Proc. 2nd International Symposium on Voronoi Diagrams in Science and Engineering, 1–11.Google Scholar
    13. Fu, Y., and Zhou, B. 2008. Direct sampling on surfaces for high quality remeshing. In SPM ’08: Proceedings of the 2008 ACM symposium on Solid and physical modeling, 115–124. Google ScholarDigital Library
    14. Groemer, H. 1996. Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press.Google Scholar
    15. Hiller, S., Hellwig, H., and Deussen, O. 2003. Beyond stippling — methods for distributing objects on the plane. In Proceedings of Eurographics 2003, vol. 22, 515–522.Google Scholar
    16. Kim, D., Son, M., Lee, Y., Kang, H., and Lee, S. 2008. Feature-guided image stippling. Computer Graphics Forum 27, 4, 1209–1216. Google ScholarDigital Library
    17. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. In SIGGRAPH ’06, 509–518. Google ScholarDigital Library
    18. Labelle, F., and Shewchuk, J. R. 2003. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In SCG ’03: Proceedings of the nineteenth annual symposium on Computational geometry, 191–200. Google ScholarDigital Library
    19. Lagae, A., and Dutré, P. 2005. A procedural object distribution function. ACM Transactions on Graphics 24, 4, 1442–1461. Google ScholarDigital Library
    20. Lagae, A., and Dutré, P. 2006. An alternative for Wang tiles: colored edges versus colored corners. ACM Transactions on Graphics 25, 4, 1442–1459. Google ScholarDigital Library
    21. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1, 114–129.Google ScholarCross Ref
    22. Laidlaw, D. H., Kirby, R. M., Jackson, C. D., Davidson, J. S., Miller, T. S., da Silva, M., Warren, W. H., and Tarr, M. J. 2005. Comparing 2D vector field visualization methods: A user study. IEEE Transactions on Visualization and Computer Graphics 11, 1, 59–70. Google ScholarDigital Library
    23. Lévy, B., and Liu, Y. 2010. Lp Centroidal Voronoi Tessellation and its applications. In SIGGRAPH ’10, 119:1–11. Google ScholarDigital Library
    24. Li, H., Lo, K.-Y., Leung, M.-K., and Fu, C.-W. 2008. Dual Poisson-disk tiling: An efficient method for distributing features on arbitrary surfaces. IEEE Transactions on Visualization and Computer Graphics 14, 5, 982–998. Google ScholarDigital Library
    25. Li, H., Nehab, D., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Fast capacity constrained Voronoi tessellation. In I3D ’10: SIGGRAPH symposium on Interactive 3D Graphics and Games Posters, 13:1–1. Google ScholarDigital Library
    26. Lloyd, S. 1983. An optimization approach to relaxation labeling algorithms. Image and Vision Computing 1, 2, 85–91.Google ScholarCross Ref
    27. McCool, M., and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Proceedings of the conference on Graphics interface ’92, 94–105. Google ScholarDigital Library
    28. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In SIGGRAPH ’87, 65–72. Google ScholarDigital Library
    29. Ostromoukhov, V. 2007. Sampling with Polyominoes. In SIGGRAPH ’07, 78:1–6. Google ScholarDigital Library
    30. Pang, W.-M., Qu, Y., Wong, T.-T., Cohen-Or, D., and Heng, P.-A. 2008. Structure-aware halftoning. In SIGGRAPH ’08, 89:1–8. Google ScholarDigital Library
    31. Praun, E., and Hoppe, H. 2003. Spherical parametrization and remeshing. In SIGGRAPH ’03, 340–349. Google ScholarDigital Library
    32. Roy, R. 1976. Spectral analysis for a random process on the sphere. Annals of the Institute of Statistical Mathematics 28, 1 (December), 91–97.Google ScholarCross Ref
    33. Secord, A. 2002. Weighted Voronoi stippling. In NPAR ’02: Proceedings of the 2nd international symposium on Non-photorealistic animation and rendering, 37–43. Google ScholarDigital Library
    34. Sethian, J. A. 1996. A fast marching level set method for monotonically advancing fronts. In Proc. Nat. Acad. Sci, 1591–1595.Google ScholarCross Ref
    35. Turk, G., and Banks, D. 1996. Image-guided streamline placement. In SIGGRAPH ’96, 453–460. Google ScholarDigital Library
    36. Turk, G. 1992. Re-tiling polygonal surfaces. In SIGGRAPH ’92, 55–64. Google ScholarDigital Library
    37. Vorsatz, J., Rössl, C., Kobbelt, L., and Seidel, H.-P. 2001. Feature sensitive remeshing. In Computer Graphics Forum, Proceedings of Eurographics 2001, vol. 20, 393–401.Google Scholar
    38. Weber, O., Devir, Y. S., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2008. Parallel algorithms for approximation of distance maps on parametric surfaces. ACM Trans. Graph. 27, 4, 1–16. Google ScholarDigital Library
    39. Wei, L.-Y. 2008. Parallel Poisson disk sampling. In SIGGRAPH ’08, 20:1–9. Google ScholarDigital Library
    40. Wei, L.-Y. 2010. Multi-class blue noise sampling. In SIGGRAPH ’10, 79:1–8. Google ScholarDigital Library
    41. White, K., Cline, D., and Egbert, P. 2007. Poisson disk point sets by hierarchical dart throwing. In Symposium on Interactive Ray Tracing, 129–132. Google ScholarDigital Library
    42. Wolberg, G. 1994. Digital Image Warping. IEEE Computer Society Press, Los Alamitos, CA, USA. Google ScholarDigital Library
    43. Yellott, J. I. J. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382–385.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org