“Anisotropic blue noise sampling”
Conference:
Type(s):
Title:
- Anisotropic blue noise sampling
Session/Category Title: Sampling & filtering
Presenter(s)/Author(s):
Moderator(s):
Abstract:
Blue noise sampling is widely employed for a variety of imaging, geometry, and rendering applications. However, existing research so far has focused mainly on isotropic sampling, and challenges remain for the anisotropic scenario both in sample generation and quality verification. We present anisotropic blue noise sampling to address these issues. On the generation side, we extend dart throwing and relaxation, the two classical methods for isotropic blue noise sampling, for the anisotropic setting, while ensuring both high-quality results and efficient computation. On the verification side, although Fourier spectrum analysis has been one of the most powerful and widely adopted tools, so far it has been applied only to uniform isotropic samples. We introduce approaches based on warping and sphere sampling that allow us to extend Fourier spectrum analysis for adaptive and/or anisotropic samples; thus, we can detect problems in alternative anisotropic sampling techniques that were not yet found via prior verification. We present several applications of our technique, including stippling, visualization, surface texturing, and object distribution.
References:
1. Alliez, P., Meyer, M., and Desbrun, M. 2002. Interactive geometry remeshing. In SIGGRAPH ’02, 347–354. Google ScholarDigital Library
2. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. In SIGGRAPH ’03, 485–493. Google ScholarDigital Library
3. Balzer, M., Schlomer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd’s method. In SIGGRAPH ’09, 86:1–8. Google ScholarDigital Library
4. Balzer, M. 2009. Capacity-constrained Voronoi diagrams in continuous spaces. In International Symposium on Voronoi Diagrams in Science and Engineering, 79–88. Google ScholarDigital Library
5. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel Poisson disk sampling with spectrum analysis on surfaces. In SIGGRAPH Asia ’10, to appear. Google ScholarDigital Library
6. Cabral, B., and Leedom, L. C. 1993. Imaging vector fields using line integral convolution. In SIGGRAPH ’93, 263–270. Google ScholarDigital Library
7. Cline, D., Jeschke, S., Razdan, A., White, K., and Wonka, P. 2009. Dart throwing on surfaces. In EGSR ’09, 1217–1226. Google ScholarDigital Library
8. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Transactions on Graphics 5, 1, 51–72. Google ScholarDigital Library
9. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. Computer Graphics Forum 21, 3, 209–218.Google ScholarCross Ref
10. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. In SIGGRAPH ’06, 503–508. Google ScholarDigital Library
11. Feng, L., Hotz, I., Hamann, B., and Joy, K. 2008. Anisotropic noise samples. IEEE Transactions on Visualization and Computer Graphics 14, 2, 342–354. Google ScholarDigital Library
12. Fritzsche, L.-P., Hellwig, H., Hiller, S., and Deussen, O. 2005. Interactive design of authentic looking mosaics using Voronoi structures. In In Proc. 2nd International Symposium on Voronoi Diagrams in Science and Engineering, 1–11.Google Scholar
13. Fu, Y., and Zhou, B. 2008. Direct sampling on surfaces for high quality remeshing. In SPM ’08: Proceedings of the 2008 ACM symposium on Solid and physical modeling, 115–124. Google ScholarDigital Library
14. Groemer, H. 1996. Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press.Google Scholar
15. Hiller, S., Hellwig, H., and Deussen, O. 2003. Beyond stippling — methods for distributing objects on the plane. In Proceedings of Eurographics 2003, vol. 22, 515–522.Google Scholar
16. Kim, D., Son, M., Lee, Y., Kang, H., and Lee, S. 2008. Feature-guided image stippling. Computer Graphics Forum 27, 4, 1209–1216. Google ScholarDigital Library
17. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. In SIGGRAPH ’06, 509–518. Google ScholarDigital Library
18. Labelle, F., and Shewchuk, J. R. 2003. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In SCG ’03: Proceedings of the nineteenth annual symposium on Computational geometry, 191–200. Google ScholarDigital Library
19. Lagae, A., and Dutré, P. 2005. A procedural object distribution function. ACM Transactions on Graphics 24, 4, 1442–1461. Google ScholarDigital Library
20. Lagae, A., and Dutré, P. 2006. An alternative for Wang tiles: colored edges versus colored corners. ACM Transactions on Graphics 25, 4, 1442–1459. Google ScholarDigital Library
21. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1, 114–129.Google ScholarCross Ref
22. Laidlaw, D. H., Kirby, R. M., Jackson, C. D., Davidson, J. S., Miller, T. S., da Silva, M., Warren, W. H., and Tarr, M. J. 2005. Comparing 2D vector field visualization methods: A user study. IEEE Transactions on Visualization and Computer Graphics 11, 1, 59–70. Google ScholarDigital Library
23. Lévy, B., and Liu, Y. 2010. Lp Centroidal Voronoi Tessellation and its applications. In SIGGRAPH ’10, 119:1–11. Google ScholarDigital Library
24. Li, H., Lo, K.-Y., Leung, M.-K., and Fu, C.-W. 2008. Dual Poisson-disk tiling: An efficient method for distributing features on arbitrary surfaces. IEEE Transactions on Visualization and Computer Graphics 14, 5, 982–998. Google ScholarDigital Library
25. Li, H., Nehab, D., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Fast capacity constrained Voronoi tessellation. In I3D ’10: SIGGRAPH symposium on Interactive 3D Graphics and Games Posters, 13:1–1. Google ScholarDigital Library
26. Lloyd, S. 1983. An optimization approach to relaxation labeling algorithms. Image and Vision Computing 1, 2, 85–91.Google ScholarCross Ref
27. McCool, M., and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Proceedings of the conference on Graphics interface ’92, 94–105. Google ScholarDigital Library
28. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In SIGGRAPH ’87, 65–72. Google ScholarDigital Library
29. Ostromoukhov, V. 2007. Sampling with Polyominoes. In SIGGRAPH ’07, 78:1–6. Google ScholarDigital Library
30. Pang, W.-M., Qu, Y., Wong, T.-T., Cohen-Or, D., and Heng, P.-A. 2008. Structure-aware halftoning. In SIGGRAPH ’08, 89:1–8. Google ScholarDigital Library
31. Praun, E., and Hoppe, H. 2003. Spherical parametrization and remeshing. In SIGGRAPH ’03, 340–349. Google ScholarDigital Library
32. Roy, R. 1976. Spectral analysis for a random process on the sphere. Annals of the Institute of Statistical Mathematics 28, 1 (December), 91–97.Google ScholarCross Ref
33. Secord, A. 2002. Weighted Voronoi stippling. In NPAR ’02: Proceedings of the 2nd international symposium on Non-photorealistic animation and rendering, 37–43. Google ScholarDigital Library
34. Sethian, J. A. 1996. A fast marching level set method for monotonically advancing fronts. In Proc. Nat. Acad. Sci, 1591–1595.Google ScholarCross Ref
35. Turk, G., and Banks, D. 1996. Image-guided streamline placement. In SIGGRAPH ’96, 453–460. Google ScholarDigital Library
36. Turk, G. 1992. Re-tiling polygonal surfaces. In SIGGRAPH ’92, 55–64. Google ScholarDigital Library
37. Vorsatz, J., Rössl, C., Kobbelt, L., and Seidel, H.-P. 2001. Feature sensitive remeshing. In Computer Graphics Forum, Proceedings of Eurographics 2001, vol. 20, 393–401.Google Scholar
38. Weber, O., Devir, Y. S., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2008. Parallel algorithms for approximation of distance maps on parametric surfaces. ACM Trans. Graph. 27, 4, 1–16. Google ScholarDigital Library
39. Wei, L.-Y. 2008. Parallel Poisson disk sampling. In SIGGRAPH ’08, 20:1–9. Google ScholarDigital Library
40. Wei, L.-Y. 2010. Multi-class blue noise sampling. In SIGGRAPH ’10, 79:1–8. Google ScholarDigital Library
41. White, K., Cline, D., and Egbert, P. 2007. Poisson disk point sets by hierarchical dart throwing. In Symposium on Interactive Ray Tracing, 129–132. Google ScholarDigital Library
42. Wolberg, G. 1994. Digital Image Warping. IEEE Computer Society Press, Los Alamitos, CA, USA. Google ScholarDigital Library
43. Yellott, J. I. J. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382–385.Google ScholarCross Ref


