“Adaptive color display via perceptually-driven factored spectral projection” by Kauvar, Yang, Shi, McDowall and Wetzstein – ACM SIGGRAPH HISTORY ARCHIVES

“Adaptive color display via perceptually-driven factored spectral projection” by Kauvar, Yang, Shi, McDowall and Wetzstein

  • 2015 SA Technical Papers_Kauvar_Adaptive Color Display via Perceptually-driven Factored Spectral Projection

Conference:


Type(s):


Title:

    Adaptive color display via perceptually-driven factored spectral projection

Session/Category Title:   Color and Sketching


Presenter(s)/Author(s):



Abstract:


    Fundamental display characteristics are constantly being improved, especially resolution, dynamic range, and color reproduction. However, whereas high resolution and high-dynamic range displays have matured as a technology, it remains largely unclear how to extend the color gamut of a display without either sacrificing light throughput or making other tradeoffs. In this paper, we advocate for adaptive color display; with hardware implementations that allow for color primaries to be dynamically chosen, an optimal gamut and corresponding pixel states can be computed in a content-adaptive and user-centric manner. We build a flexible gamut projector and develop a perceptually-driven optimization framework that robustly factors a wide color gamut target image into a set of time-multiplexed primaries and corresponding pixel values. We demonstrate that adaptive primary selection has many benefits over fixed gamut selection and show that our algorithm for joint primary selection and gamut mapping performs better than existing methods. Finally, we evaluate the proposed computational display system extensively in simulation and, via photographs and user experiments, with a prototype adaptive color projector.

References:


    1. Ajito, T., Obi, T., Yamaguchi, M., and Ohyama, N. 2000. Expanded color gamut reproduced by six-primary projection display. In Proc. SPIE 3954, 130–137.
    2. Banterle, F., Artusi, A., Aydin, T. O., Didyk, P., Eisemann, E., Gutierrez, D., Mantiuk, R., and Myszkowski, K. 2011. Multidimensional image retargeting. In SIGGRAPH Asia 2011 Courses, 15:1–15:612.
    3. Ben-Chorin, M., and Eliav, D. 2007. Multi-primary design of spectrally accurate displays. Journal of the SID 15, 9, 667–677.
    4. Berthouzoz, F., and Fattal, R. 2012. Resolution enhancement by vibrating displays. ACM Trans. Graph. 31, 2, 15:1–15:14.
    5. Bonnier, N., Schmitt, F., Brettel, H., and Berche, S. 2006. Evaluation of spatial gamut mapping algorithms. In Color and Imaging Conference, vol. 2006, Society for Imaging Science and Technology, 56–61.
    6. Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1, 1–122.
    7. Chambolle, A., and Pock, T. 2011. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging and Vision, 40, 120145.
    8. CIE. 1932. Proceedings. Cambridge University Press.
    9. CIE. 2001. Improvement to industrial colour-difference evaluation. CIE Central Bureau.
    10. Didyk, P., Eisemann, E., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2010. Apparent display resolution enhancement for moving images. ACM Trans. Graph. (SIGGRAPH) 29, 4, 113:1–113:8.
    11. Gehm, M. E., John, R., Brady, D. J., Willett, R. M., and Schulz, T. J. 2007. Single-shot compressive spectral imaging with a dual-disperser architecture. OSA Opt. Express 15, 21, 14013–14027.
    12. Heide, F., Lanman, D., Reddy, D., Kautz, J., Pulli, K., and Luebke, D. 2014. Cascaded displays: Spatiotemporal superresolution using offset pixel layers. ACM Trans. Graph. (SIGGRAPH) 33, 4, 60:1–60:11.
    13. Hirsch, M., Wetzstein, G., and Raskar, R. 2014. A compressive light field projection system. ACM Trans. Graph. (SIGGRAPH) 33, 4, 58:1–58:12.
    14. Ho, N. 2008. Nonnegative Matrix Factorization Algorithms and Applications. PhD thesis, Universite catholique de Louvain.
    15. Kelly, D. H. 1979. Motion and vision. ii. stabilized spatio-temporal threshold surface. Journal of the Optical Society of America 69, 1340–1349.
    16. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: Optimizing dual-layer 3d displays using low-rank light field factorization. ACM Trans. Graph. (SIGGRAPH) 29, 6, 163:1–163:10.
    17. Lee, D. D., and Seung, S. 1999. Learning the Parts of Objects by Non-negative Matrix Factorization. Nature 401, 788–791.
    18. Li, Y., Majumder, A., Lu, D., and Gopi, M. 2015. Content-independent multi-spectral display using superimposed projections. Computer Graphics Forum (Eurographics).
    19. Lin, X., Liu, Y., Wu, J., and Dai, Q. 2014. Spatial-spectral encoded compressive hyperspectral imaging. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6.
    20. Long, D., and Fairchild, M. 2011. Optimizing spectral color reproduction in multiprimary digital projection. In Color and Imaging Conference.
    21. MacAdam, D. L. 1942. Visual sensitivities to color differences in daylight. OSA JOSA 32, 5, 247–273.
    22. Majumder, A., and Brown, M. S. 2007. Practical Multi-projector Display Design. AK Peters.
    23. Majumder, A., Brown, R., and El-Ghoroury, H. 2010. Display gamut reshaping for color emulation and balancing. In Proc. CVPR Workshops, 17–24.
    24. Masia, B., Wetzstein, G., Didyk, P., and Gutierrez, D. 2013. A survey on computational displays: Pushing the boundaries of optics, computation, and perception. Computers & Graphics 37, 8, 1012–1038.
    25. Mohan, A., Raskar, R., and Tumblin, J. 2008. Agile spectrum imaging: Programmable wavelength modulation for cameras and projectors. Computer Graphics Forum 27, 2, 709–717.
    26. Pauca, V. P., Piper, J., and Plemmons, R. J. 2006. Non-negative matrix factorization for spectral data analysis. Linear Algebra and its Applications 416, 1, 29–47.
    27. Platos, J., Gajdos, P., Kromer, P., and Snasel, V. 2010. Non-negative matrix factorization on gpu. Comm. Computer and Information Science Volume 87, 21–30.
    28. Rice, J., Brown, S., Neira, J., and Bousquet, R. 2007. A hyperspectral image projector for hyperspectral imagers. In Proc. SPIE 6565, 65650C.
    29. Rice, J. P., Brown, S. W., Allen, D. W., Yoon, H. W., Litorja, M., and Hwang, J. C. 2012. Hyperspectral image projector applications. vol. 8254, 82540R–82540R–8.
    30. Rodríguez-Pardo, C. E., Sharma, G., Feng, X.-F., Speigle, J., and Sezan, I. 2012. Optimal gamut volume design for three primary and multiprimary display systems. In Proc. SPIE Electronic Imaging, 82920C–82920C.
    31. Sajadi, B., Majumder, A., Hiwada, K., Maki, A., and Raskar, R. 2011. Switchable primaries using shiftable layers of color filter arrays. ACM Trans. Graph. (SIGGRAPH) 30, 4.
    32. Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-guided resolution enhancement in projectors via optical pixel sharing. ACM Trans. Graph. (SIGGRAPH) 31, 4, 79:1–79:122.
    33. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. (SIGGRAPH) 23, 3, 760–768.
    34. Teragawa, M., Yoshida, A., Yoshiyama, K., Nakagawa, S., Tomizawa, K., and Yoshida, Y. 2012. Review paper: Multi-primary-color displays: The latest technologies and their benefits. Journal of the SID 20, 1, 1–11.
    35. Wagadarikar, A. A., Pitsianis, N. P., Sun, X., and Brady, D. J. 2009. Video rate spectral imaging using a coded aperture snapshot spectral imager. OSA Opt. Express 17, 8, 6368–6388.
    36. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. (SIGGRAPH) 30, 4.
    37. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 4, 80:1–80:11.
    38. Witt, K. 2007. CIE Color Difference Metrics. Wiley.
    39. Zhang, X. M., and Wandell, B. A. 1996. A spatial extension to cielab for digital color image reproduction. In Proc. SID.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org