“A Vortex Particle-on-mesh Method for Soap Film Simulation”
Conference:
Type(s):
Title:
- A Vortex Particle-on-mesh Method for Soap Film Simulation
Presenter(s)/Author(s):
Abstract:
We introduce a sophisticated vortex particle method for precise tangential flow simulations on membranes. It uniquely splits membrane velocity into circulation and expansion, employing a hybrid particle-mesh technique to integrate surfactant and thickness dynamics. This method accurately captures complex thin film interactions, facilitating highly realistic simulations.
References:
[1]
Bart Adams and Martin Wicke. 2009. Meshless Approximation Methods and Applications in Physics Based Modeling and Animation. In Eurographics (Tutorials). 213–239.
[2]
Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2015. A stream function solver for liquid simulations. ACM Trans. Graph. 34, 4 (2015), 1–9.
[3]
Ryoichi Ando, Nils Th?rey, and Chris Wojtan. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–10.
[4]
Omri Azencot, Steffen Wei?mann, Maks Ovsjanikov, Max Wardetzky, and Mirela BenChen. 2014. Functional Fluids on Surfaces. Computer Graphics Forum 33, 5 (2014), 237–246.
[5]
Alfred Barnat and Nancy Pollard. 2012. Smoke Sheets for Graph-Structured Vortex Filaments. In Proceedings of the 2012 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Lausanne, Switzerland) (SCA ’12). ACM, 10 pages.
[6]
Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3 (2007), 100–es.
[7]
Harsh Bhatia, Gregory Norgard, Valerio Pascucci, and Peer-Timo Bremer. 2013. The Helmholtz-Hodge Decomposition—A Survey. IEEE Transactions on Visualization and Computer Graphics 19, 8 (2013), 1386–1404.
[8]
Jeremiah U Brackbill, Douglas B Kothe, and Hans M Ruppel. 1988. FLIP: a low-dissipation, particle-in-cell method for fluid flow. Computer Physics Communications 48, 1 (1988), 25–38.
[9]
Tyson Brochu and Robert Bridson. 2009. Robust Topological Operations for Dynamic Explicit Surfaces. SIAM Journal on Scientific Computing 31, 4 (2009), 2472–2493.
[10]
Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Lausanne, Switzerland) (SCA ’12). Eurographics Association, Goslar, DEU, 87–95.
[11]
Jean-Marc Chomaz. 2001. The dynamics of a viscous soap film with soluble surfactant. Journal of Fluid Mechanics 442 (2001), 387–409.
[12]
Georges-Henri Cottet, Petros D Koumoutsakos, et al. 2000. Vortex methods: theory and practice. Vol. 8. Cambridge university press Cambridge.
[13]
Y Couder, JM Chomaz, and Marc Rabaud. 1989. On the hydrodynamics of soap films. Physica D: Nonlinear Phenomena 37, 1–3 (1989), 384–405.
[14]
Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schr?der. 2013. Digital geometry processing with discrete exterior calculus. In ACM SIGGRAPH 2013 Courses (Anaheim, California) (SIGGRAPH ’13). Association for Computing Machinery, New York, NY, USA, 126 pages.
[15]
Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. ACM Trans. Graph. 34, 4 (jul 2015), 9 pages.
[16]
Y. Deng, M. Wang, X. Kong, S. Xiong, Z. Xian, and B. Zhu. 2022. A Moving Eulerian-Lagrangian Particle Method for Thin Film and Foam Simulation. ACM Trans. Graph. 41, 4 (2022).
[17]
Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schr?der, and Mathieu Desbrun. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1 (2007), 4–es.
[18]
Nick Foster and Dimitri Metaxas. 1996. Realistic animation of liquids. Graphical models and image processing 58, 5 (1996), 471–483.
[19]
Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A polynomial particle-in-cell method. ACM Trans. Graph. 36, 6 (2017), 1–12.
[20]
GameDev.net. 2013. Thin Film Interference for Computer Graphics. https://www.gamedev.net/tutorials/programming/graphics/thin-film-interference-for-computer-graphics-r2962/. Accessed: Date Accessed.
[21]
Ga?l Guennebaud, Beno?t Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
[22]
Francis H Harlow. 1962. The particle-in-cell method for numerical solution of problems in fluid dynamics. Technical Report. Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
[23]
David J. Hill and Ronald D. Henderson. 2016. Efficient Fluid Simulation on the Surface of a Sphere. 35, 2 (apr 2016), 9 pages.
[24]
Weizhen Huang, Julian Iseringhausen, Tom Kneiphof, Ziyin Qu, Chenfanfu Jiang, and Matthias B Hullin. 2020. Chemomechanical simulation of soap film flow on spherical bubbles. ACM Trans. Graph. 39, 4 (2020), 41–1.
[25]
Sadashige Ishida, Peter Synak, Fumiya Narita, Toshiya Hachisuka, and Chris Wojtan. 2020. A model for soap film dynamics with evolving thickness. ACM Trans. Graph. 39, 4 (2020), 31–1.
[26]
Sadashige Ishida, Chris Wojtan, and Albert Chern. 2022. Hidden Degrees of Freedom in Implicit Vortex Filaments. ACM Trans. Graph. 41, 6 (nov 2022), 14 pages.
[27]
Sadashige Ishida, Masafumi Yamamoto, Ryoichi Ando, and Toshiya Hachisuka. 2017. A hyperbolic geometric flow for evolving films and foams. ACM Trans. Graph. 36, 6 (2017), 1–11.
[28]
Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34, 4 (2015), 1–10.
[29]
Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao, and Jarek Rossignac. 2007. Simulation of bubbles in foam with the volume control method. In ACM SIGGRAPH 2007 Papers (San Diego, California) (SIGGRAPH ’07). Association for Computing Machinery, New York, NY, USA, 98–es.
[30]
Masami Matsumoto and Shigeo Kawata. 1990. TRIPIC: Triangular-mesh particle-in-cell code. J. Comput. Phys. 87, 2 (1990), 488–493.
[31]
Alexander George McKenzie. 2007. HOLA: a high-order Lie advection of discrete differential forms with applications in Fluid Dynamics. Ph. D. Dissertation. California Institute of Technology.
[32]
Mark Meyer, Mathieu Desbrun, Peter Schr?der, and Alan H. Barr. 2003. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In Visualization and Mathematics III, Hans-Christian Hege and Konrad Polthier (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 35–57.
[33]
Fran?ois Morency, H?lo?se Beaugendre, and F?d?rico Gallizio. 2012. Aerodynamic force evaluation for ice shedding phenomenon using vortex in cell scheme, penalisation and level set approaches. International Journal of Computational Fluid Dynamics 26, 9–10 (2012), 435–450.
[34]
Sang Il Park and Myoung Jun Kim. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA ’05). Association for Computing Machinery, New York, NY, USA, 261–270.
[35]
Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31, 4 (jul 2012), 8 pages.
[36]
Tobias Pfaff, Nils Thuerey, Andrew Selle, and Markus Gross. 2009. Synthetic turbulence using artificial boundary layers. ACM Trans. Graph. 28, 5 (dec 2009), 1–10.
[37]
Ziyin Qu, Minchen Li, Fernando De Goes, and Chenfanfu Jiang. 2022. The power particle-in-cell method. ACM Transactions on Graphics 41, 4 (2022).
[38]
Ziyin Qu, Minchen Li, Yin Yang, Chenfanfu Jiang, and Fernando De Goes. 2023. Power Plastics: A Hybrid Lagrangian/Eulerian Solver for Mesoscale Inelastic Flows. ACM Trans. Graph. 42, 6 (dec 2023), 11 pages.
[39]
Robert I. Saye and James A. Sethian. 2013. Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams. Science 340, 6133 (2013), 720–724.
[40]
Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method for smoke, water and explosions. In ACM SIGGRAPH 2005 Papers (Los Angeles, California) (SIGGRAPH ’05). Association for Computing Machinery, New York, NY, USA, 910–914.
[41]
Evgenia Shabalina, Antoine B?rut, Mathilde Cavelier, Arnaud Saint-Jalmes, and Isabelle Cantat. 2019. Rayleigh-Taylor-like instability in a foam film. Phys. Rev. Fluids 4 (Dec 2019), 124001. Issue 12.
[42]
Lin Shi and Yizhou Yu. 2004. Inviscid and incompressible fluid simulation on triangle meshes. Computer Animation and Virtual Worlds 15, 3–4 (2004), 173–181.
[43]
SideFX. 2023. Houdini (Version 19.5). https://www.sidefx.com. [Computer software].
[44]
Jos Stam. 1999. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., USA, 121–128.
[45]
Mengdi Wang, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong, and Bo Zhu. 2021. Thin-film smoothed particle hydrodynamics fluid. ACM Trans. Graph. 40, 4 (jul 2021), 16 pages.
[46]
Stephanie Wang, Mohammad Sina Nabizadeh, and Albert Chern. 2023. Exterior Calculus in Graphics: Course Notes for a SIGGRAPH 2023 Course. In ACM SIGGRAPH 2023 Courses (, Los Angeles, California,) (SIGGRAPH ’23). Association for Computing Machinery, New York, NY, USA, 126 pages.
[47]
Joe Warren, Scott Schaefer, Anil N Hirani, and Mathieu Desbrun. 2007. Barycentric coordinates for convex sets. Advances in computational mathematics 27 (2007), 319–338.
[48]
Steffen Wei?mann and Ulrich Pinkall. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29, 4 (jul 2010), 12 pages.
[49]
S. Xiong, R. Tao, Y. Zhang, F. Feng, and B. Zhu. 2021. Incompressible flow simulation on vortex segment clouds. ACM Trans. Graph. 40, 4 (2021).
[50]
Hang Yin, Mohammad Sina Nabizadeh, Baichuan Wu, Stephanie Wang, and Albert Chern. 2023. Fluid Cohomology. ACM Trans. Graph. 42, 4 (jul 2023), 25 pages.
[51]
Xinxin Zhang and Robert Bridson. 2014. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. 33, 6 (nov 2014), 11 pages.
[52]
Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. 2006. Simulation of bubbles. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vienna, Austria) (SCA ’06). Eurographics Association, Goslar, DEU, 325–333.
[53]
Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw. 2014. Codimensional surface tension flow on simplicial complexes. ACM Trans. Graph. 33, 4 (jul 2014), 11 pages.
[54]
Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (jul 2005), 965–972.