“A layered, heterogeneous reflectance model for acquiring and rendering human skin” – ACM SIGGRAPH HISTORY ARCHIVES

“A layered, heterogeneous reflectance model for acquiring and rendering human skin”

  • ©

Conference:


Type(s):


Title:

    A layered, heterogeneous reflectance model for acquiring and rendering human skin

Session/Category Title:   Reflectance & subdivision


Presenter(s)/Author(s):



Abstract:


    We introduce a layered, heterogeneous spectral reflectance model for human skin. The model captures the inter-scattering of light among layers, each of which may have an independent set of spatially-varying absorption and scattering parameters. For greater physical accuracy and control, we introduce an infinitesimally thin absorbing layer between scattering layers. To obtain parameters for our model, we use a novel acquisition method that begins with multi-spectral photographs. By using an inverse rendering technique, along with known chromophore spectra, we optimize for the best set of parameters for each pixel of a patch. Our method finds close matches to a wide variety of inputs with low residual error.We apply our model to faithfully reproduce the complex variations in skin pigmentation. This is in contrast to most previous work, which assumes that skin is homogeneous or composed of homogeneous layers. We demonstrate the accuracy and flexibility of our model by creating complex skin visual effects such as veins, tattoos, rashes, and freckles, which would be difficult to author using only albedo textures at the skin’s outer surface. Also, by varying the parameters to our model, we simulate effects from external forces, such as visible changes in blood flow within the skin due to external pressure.

References:


    1. Bernstein, E. F. 2006. Laser treatment of tattoos. Dermatol. Clin. 24, 43–55.Google ScholarCross Ref
    2. Borshukov, G., and Lewis, J. P. 2003. Realistic human face rendering for “The Matrix Reloaded”. In ACM SIGGRAPH Sketches and Applications, ACM, 1. Google Scholar
    3. CIE. 1931. In Commission Internationale de l’Eclairage Proceedings.Google Scholar
    4. Cotton, S. D., Claridge, E., and Hall, P. N. 1999. A skin imaging method based on a colour formation model and its application to the diagnosis of pigmented skin lesions. In Proceedings of Medical Image Understanding and Analysis ’99, 49–52.Google Scholar
    5. Cula, O., Dana, K., Murphy, F., and Rao, B. 2004. Bidirectional imaging and modeling of skin texture. IEEE Transactions on Biomedical Engineering 51, 12 (Dec.), 2148–2159.Google ScholarCross Ref
    6. Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. In Proceedings of ACM SIGGRAPH 1999, vol. 18, 1–34.Google Scholar
    7. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proceedings of ACM SIGGRAPH 2000, 145–156. Google Scholar
    8. d’Eon, E., Luebke, D., and Enderton, E. 2007. Efficient rendering of human skin. In Rendering Techniques, 147–157. Google Scholar
    9. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. Graphic. 24, 3, 1032–1039. Google ScholarDigital Library
    10. Donner, C., and Jensen, H. W. 2006. A spectral BSSRDF for shading human skin. In Rendering Techniques, 409–417. Google Scholar
    11. Donner, C. 2006. Towards Realistic Image Synthesis of Scattering Materils. PhD thesis, University of California, San Diego. Google Scholar
    12. Efros, A. A., and Freeman, W. T. 2001. Image quilting for texture synthesis and transfer. In Proceedings of ACM SIGGRAPH 2001, 341–346. Google Scholar
    13. Fitzpatrick, T. 1988. The validity and practicality of sunreactive skin times I through VI. Arch. Dermatol. 124, 6, 869–871.Google ScholarCross Ref
    14. Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J. 1999. Illumination-based image synthesis: Creating novel images of human faces under differing pose and lighting. In Proceedings of the IEEE Workshop on Multi-View Modeling and Analysis of Visual Scenes (MVIEW ’99), 47–54. Google ScholarDigital Library
    15. Ghosh, A., Hawkins, T., Peers, P., Frederiksen, S., and Debevec, P. 2008. Practical modeling and acquisition of layered facial reflectance. To appear in ACM Trans. Graphic. 27. Google ScholarDigital Library
    16. Goesele, M., Lensch, H. P. A., Lang, J., Fuchs, C., and Peter Siedel, H. 2004. DISCO: Acquisition of translucent objects. ACM Trans. Graphic. 23, 3, 835–844. Google ScholarDigital Library
    17. Hanrahan, P., and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of ACM SIGGRAPH 1993, 164–174. Google Scholar
    18. Hawkins, T., Wenger, A., Tchou, C., Gardner, A., Göransson, F., and Debevec, P. 2004. Animatable facial reflectance fields. In Rendering Techniques, 309–320. Google Scholar
    19. Hery, C. 2003. Implementing a skin BSSRDF. ACM SIGGRAPH 2003 Course 9, 73–88. Google Scholar
    20. Igarashi, T., Nishino, K., and Nayar, S. K. 2005. The appearance of human skin. Technical Report CUCS-024-05, Columbia University.Google Scholar
    21. Jacques, S. L., Prahl, S., and Lindsey, J. 2001. Optical properties spectra. Oregon Medical Laser Center, http://omlc.ogi.edu/spectra.Google Scholar
    22. Jacques, S. L. 1996. Origins of tissue optical properties in the UVA, Visible, and NIR regions. In OSA TOPS on Advances in Optical Imaging and Photon Migration, vol. 2, 364–371.Google Scholar
    23. Jacques, S. L. 1998. Skin optics. Oregon Medical Laser Center News, http://omlc.ogi.edu/news/jan98/skinoptics.html.Google Scholar
    24. Jensen, H. W., and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graphic. 21, 576–581. Google ScholarDigital Library
    25. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, 511–518. Google Scholar
    26. Krishnaswamy, A., and Baranoski, G. V. G. 2004. A biophysically-based spectral model of light interaction with human skin. In Proceedings of EUROGRAPHICS 2004, vol. 23.Google Scholar
    27. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Rendering Techniques, 183–194. Google Scholar
    28. Marschner, S. R., Westin, S. H., Lafortune, E. P. F., Torrance, K. E., and Greenberg, D. P. 1999. Image-based BRDF measurement including human skin. In Rendering Techniques, 119–130. Google Scholar
    29. Matts, P., Dykes, P., and Marks, R. 2007. The distribution of melanin in skin determined in vivo. British Journal of Dermatology 156, 4, 620–628.Google ScholarCross Ref
    30. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graphic. 25, 3, 746–753. Google ScholarDigital Library
    31. Sayre, R. M., and Black, H. S. 1992. Beta-carotene does not act as an optical filter in skin. J. Photochemem. Photobiol. B: Biol. 12, 83–90.Google ScholarCross Ref
    32. Stam, J. 2001. An illumination model for a skin layer bounded by rough surfaces. In Rendering Techniques, 39–52. Google Scholar
    33. Tariq, S., Gardner, A., Llamas, I., Jones, A., Debevec, P., and Turk, G. 2006. Efficient estimation of spatially varying subsurface scattering parameters. In Vision, Modeling, and Visualization.Google Scholar
    34. Tong, X., Wang, J., Lin, S., Guo, B., and Yeung Shum, H. 2005. Modeling and rendering of quasi-homogeneous materials. ACM Trans. Graphic. 24, 3, 1054–1061. Google ScholarDigital Library
    35. Torrance, K., and Sparrow, E. 1967. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57, 1104–1114.Google ScholarCross Ref
    36. Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, H., Nabeshima, H., Akazaki, S., Hori, K., and Miyake, Y. 2003. Image-based skin color and texture analysis synthesis by extracting hemoglobin and melanin information in the skin. ACM Trans. Graphic. 22, 3, 770–779. Google ScholarDigital Library
    37. Tuchin, V. 2000. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. SPIE Press.Google Scholar
    38. van Gemert, M. J. C., Jacques, S. L., Sterenborg, H. J. C. M., and Star, W. M. 1989. Skin optics. IEEE Trans. Biomed. Eng. 36, 12, 1146–1154.Google ScholarCross Ref
    39. Wang, J., Zhao, S., Tong, X., Stephen Lin, Z. L., Dong, Y., Guo, B., and Shum, H. 2007. Modeling and rendering of heterogeneous translucent materials using the diffusion equation. Technical Report MSR-TR-2007-59, Microsoft Research.Google Scholar
    40. Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., and Debevec, P. 2005. Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Trans. Graphic. 24, 3, 756–764. Google ScholarDigital Library
    41. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Don-ner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graphic. 25, 1013–1024. Google ScholarDigital Library
    42. Yu, Y., Debevec, P., Malik, J., and Hawkins, T. 1999. Inverse global illumination: Recovering reflectance models of real scenes from photographs. In Proceedings of ACM SIGGRAPH 1999, 215–224. Google Scholar


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org