“A practical ply-based appearance model of woven fabrics” by Montazeri, Gammelmark, Zhao and Jensen
Conference:
Type(s):
Title:
- A practical ply-based appearance model of woven fabrics
Session/Category Title: Modeling and Capturing Appearance
Presenter(s)/Author(s):
Abstract:
Simulating the appearance of woven fabrics is challenging due to the complex interplay of lighting between the constituent yarns and fibers. Conventional surface-based models lack the fidelity and details for producing realistic close-up renderings. Micro-appearance models, on the other hand, can produce highly detailed renderings by depicting fabrics fiber-by-fiber, but become expensive when handling large pieces of clothing. Further, neither surface-based nor micro-appearance model has not been shown in practice to match measurements of complex anisotropic reflection and transmission simultaneously.In this paper, we introduce a practical appearance model for woven fabrics. We model the structure of a fabric at the ply level and simulate the local appearance of fibers making up each ply. Our model accounts for both reflection and transmission of light and is capable of matching physical measurements better than prior methods including fiber based techniques. Compared to existing micro-appearance models, our model is light-weight and scales to large pieces of clothing.
References:
1. Neeharika Adabala, Nadia Magnenat-Thalmann, and Guangzheng Fei. 2003. Real-Time Rendering of Woven Clothes. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST ’03). Association for Computing Machinery, New York, NY, USA, 41–47. Google ScholarDigital Library
2. Carlos Aliaga, Carlos Castillo, Diego Gutierrez, Miguel A Otaduy, Jorge Lopez-Moreno, and Adrian Jarabo. 2017. An appearance model for textile fibers. In Computer Graphics Forum, Vol. 36. 35–45.Google ScholarDigital Library
3. P W Anderson. 1972. More is different. Science (New York, N.Y.) 177, 4047 (1972), 393–396. arXiv:arXiv:1011.1669v3 Google ScholarCross Ref
4. Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink. 1999. Reflectance and Texture of Real-World Surfaces. ACM Trans. Graph. 18, 1 (Jan. 1999), 1–34. Google ScholarDigital Library
5. Eugene d’Eon, Guillaume Francois, Martin Hill, Joe Letteri, and Jean-Marie Aubry. 2011. An Energy-Conserving Hair Reflectance Model. In Proceedings of the Twenty-Second Eurographics Conference on Rendering (EGSR ’11). Eurographics Association, Goslar, DEU, 1181–1187. Google ScholarDigital Library
6. R. Fletcher. 1987. Practical Methods of Optimization; (2nd Ed.). Wiley-Interscience, USA.Google ScholarCross Ref
7. Google. 2019. Physically Based Rendering in Filament. https://google.github.io/filament/Filament.md.html.Google Scholar
8. Pat Hanrahan and Wolfgang Krueger. 1993. Reflection from Layered Surfaces Due to Subsurface Scattering. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’93). Association for Computing Machinery, New York, NY, USA, 165–174. Google ScholarDigital Library
9. Eric Heitz. 2018. Sampling the GGX Distribution of Visible Normals. Journal of Computer Graphics Techniques (JCGT) 7, 4 (30 November 2018), 1–13. http://jcgt.org/published/0007/04/01/Google Scholar
10. Piti Irawan and Steve Marschner. 2012. Specular Reflection from Woven Cloth. ACM Trans. Graph. 31, 1, Article Article 11 (Feb. 2012), 20 pages. Google ScholarDigital Library
11. Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. 2012. Interactive Bi-Scale Editing of Highly Glossy Materials. TOG 31, 6 (Nov. 2012), 144:1–144:7. https://doi.org/10/f96zzfGoogle ScholarDigital Library
12. Henrik Wann Jensen and Juan Buhler. 2002. A Rapid Hierarchical Rendering Technique for Translucent Materials. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’02). Association for Computing Machinery, New York, NY, USA, 576–581. Google ScholarDigital Library
13. Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. 2001. A Practical Model for Subsurface Light Transport. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01). Association for Computing Machinery, New York, NY, USA, 511–518. Google ScholarDigital Library
14. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating Knitted Cloth at the Yarn Level. ACM Trans. Graph. 27, 3 (Aug. 2008), 1–9. Google ScholarDigital Library
15. Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner. 2016. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph. 35, 1, Article Article 1 (Dec. 2016), 26 pages. Google ScholarDigital Library
16. Pramook Khungurn, Rundong Wu, James Noeckel, Steve Marschner, and Kavita Bala. 2017. Fast Rendering of Fabric Micro-Appearance Models under Directional and Spherical Gaussian Lights. ACM Trans. Graph. 36, 6, Article Article 232 (Nov. 2017), 15 pages. Google ScholarDigital Library
17. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google Scholar
18. Dieter Kraft. 1994. Algorithm 733: TOMP-Fortran modules for optimal control calculations. ACM Transactions on Mathematical Software (TOMS) 20, 3 (1994), 262–281.Google ScholarDigital Library
19. Alexandr Kuznetsov, Miloš Hašan, Zexiang Xu, Ling-Qi Yan, Bruce Walter, Nima Khademi Kalantari, Steve Marschner, and Ravi Ramamoorthi. 2019. Learning Generative Models for Rendering Specular Microgeometry. ACM Trans. Graph. 38, 6, Article Article 225 (Nov. 2019), 14 pages. Google ScholarDigital Library
20. Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L James, and Steve Marschner. 2019. Interactive design of periodic yarn-level cloth patterns. ACM Transactions on Graphics 37, 6 (jan 2019), 1–15. Google ScholarDigital Library
21. Guillaume Loubet and Fabrice Neyret. 2018. A new microflake model with microscopic self-shadowing for accurate volume downsampling. In Computer Graphics Forum, Vol. 37. 111–121.Google ScholarCross Ref
22. Fujun Luan, Shuang Zhao, and Kavita Bala. 2017. Fiber-Level On-the-Fly Procedural Textiles. Comput. Graph. Forum 36, 4 (July 2017), 123–135. Google ScholarDigital Library
23. Luxion. 2020. KeyShot. https://www.keyshot.com.Google Scholar
24. Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat Hanrahan. 2003. Light Scattering from Human Hair Fibers. ACM Trans. Graph. 22, 3 (July 2003), 780–791. Google ScholarDigital Library
25. Nelson Max. 1990. Cone-Spheres. In Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’90). Association for Computing Machinery, New York, NY, USA, 59–62. Google ScholarDigital Library
26. Stephen McAuley, Stephen Hill, Naty Hoffman, Yoshiharu Gotanda, Brian Smits, Brent Burley, and Adam Martinez. 2012. Practical Physically-Based Shading in Film and Game Production. In ACM SIGGRAPH 2012 Courses (SIGGRAPH ’12). Association for Computing Machinery, New York, NY, USA, Article Article 10, 7 pages. Google ScholarDigital Library
27. Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner, Markus Gross, and Wojciech Jarosz. 2015. Multi-Scale Modeling and Rendering of Granular Materials. SIGGRAPH 34, 4 (July 2015), 49:1–49:13. https://doi.org/10/gfzndrGoogle Scholar
28. Zahra Montazeri, Chang Xiao, Yun Fei, Changxi Zheng, and Shuang Zhao. 2019. Mechanics-Aware Modeling of Cloth Appearance. IEEE Transactions on Visualization and Computer Graphics PP (08 2019), 1–1. Google ScholarDigital Library
29. Jonathan T. Moon and Stephen R. Marschner. 2006. Simulating Multiple Scattering in Hair Using a Photon Mapping Approach. SIGGRAPH 25, 3 (July 2006), 1067–1074. https://doi.org/10/cd4qf5Google Scholar
30. Jonathan T. Moon, Bruce Walter, and Steve Marschner. 2008. Efficient Multiple Scattering in Hair Using Spherical Harmonics. SIGGRAPH 27, 3 (Aug. 2008), 31:1–31:7. https://doi.org/10/d6r3ztGoogle Scholar
31. Jonathan T. Moon, Bruce Walter, and Stephen R. Marschner. 2007. Rendering Discrete Random Media Using Precomputed Scattering Solutions. In EGSR. 231–242. https://doi.org/10/gfzp5nGoogle ScholarDigital Library
32. Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, and Jan Novák. 2016. Efficient Rendering of Heterogeneous Polydisperse Granular Media. SIGGRAPH 35, 6 (Nov. 2016), 168:1–168:14. https://doi.org/10/f9cm65Google Scholar
33. Shaun D. Ramsey, Kristin Potter, and Charles Hansen. 2004. Ray Bilinear Patch Intersections. Journal of Graphics Tools 9, 3 (2004), 41–47. arXiv:https://doi.org/10.1080/10867651.2004.10504896 Google ScholarCross Ref
34. Boris Raymond, Gaël Guennebaud, and Pascal Barla. 2016. Multi-Scale Rendering of Scratched Materials Using a Structured SV-BRDF Model. ACM Trans. Graph. 35, 4, Article Article 57 (July 2016), 11 pages. Google ScholarDigital Library
35. Iman Sadeghi, Oleg Bisker, Joachim De Deken, and Henrik Wann Jensen. 2013. A Practical Microcylinder Appearance Model for Cloth Rendering. ACM Trans. Graph. 32, 2, Article Article 14 (April 2013), 12 pages. Google ScholarDigital Library
36. Iman Sadeghi, Heather Pritchett, Henrik Wann Jensen, and Rasmus Tamstorf. 2010. An artist friendly hair shading system. ACM Transactions on Graphics, SIGGRAPH 2010 29, 4 (July 2010), 56:1–56:10.Google Scholar
37. Kai Schröder, Reinhard Klein, and Arno Zinke. 2011. A Volumetric Approach to Predictive Rendering of Fabrics. In Proceedings of the Twenty-Second Eurographics Conference on Rendering (EGSR ’11). Eurographics Association, Goslar, DEU, 1277–1286.Google ScholarDigital Library
38. Kai Schroder, Arno Zinke, and Reinhard Klein. 2015. Image-Based Reverse Engineering and Visual Prototyping of Woven Cloth. IEEE Transactions on Visualization and Computer Graphics 21 (02 2015), 188–200. Google ScholarDigital Library
39. Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed Radiance Transfer for Real-time Rendering in Dynamic, Low-frequency Lighting Environments. ACM Trans. Graph. 21, 3 (2002), 527–536.Google ScholarDigital Library
40. Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods 17, 3 (2020), 261–272.Google Scholar
41. Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007. Microfacet Models for Refraction through Rough Surfaces. In Proceedings of the 18th Eurographics Conference on Rendering Techniques (EGSR’07). Eurographics Association, Goslar, DEU, 195–206.Google ScholarDigital Library
42. Hongzhi Wu, Julie Dorsey, and Holly Rushmeier. 2011. Physically-Based Interactive Bi-Scale Material Design. SIGGRAPH Asia 30, 6 (Dec. 2011), 1. https://doi.org/10/cqtdrqGoogle Scholar
43. Hongzhi Wu, Julie Dorsey, and Holly Rushmeier. 2013. Inverse Bi-Scale Material Design. SIGGRAPH Asia 32, 6 (Nov. 2013), 163:1–163:10. https://doi.org/10/gbd5kfGoogle Scholar
44. Kui Wu and Cem Yuksel. 2017. Real-time Cloth Rendering with Fiber-level Detail. IEEE Transactions on Visualization and Computer Graphics PP, 99 (2017), 1–1. Google ScholarDigital Library
45. Ling-Qi Yan, Henrik Wann Jensen, and Ravi Ramamoorthi. 2017. An Efficient and Practical Near and Far Field Fur Reflectance Model. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2017) 36, 4 (2017).Google Scholar
46. Ling-Qi Yan, Chi-Wei Tseng, Henrik Wann Jensen, and Ravi Ramamoorthi. 2015. Physically-Accurate Fur Reflectance: Modeling, Measurement and Rendering. ACM Trans. Graph. 34, 6, Article Article 185 (Oct. 2015), 13 pages. Google ScholarDigital Library
47. Shuang Zhao, Miloš Hašan, Ravi Ramamoorthi, and Kavita Bala. 2013. Modular Flux Transfer: Efficient Rendering of High-Resolution Volumes with Repeated Structures. ACM Trans. Graph. 32, 4, Article Article 131 (July 2013), 12 pages. Google ScholarDigital Library
48. Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2011. Building Volumetric Appearance Models of Fabric Using Micro CT Imaging. ACM Trans. Graph. 30, 4, Article Article 44 (July 2011), 10 pages. Google ScholarDigital Library
49. Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2012. Structure-Aware Synthesis for Predictive Woven Fabric Appearance. ACM Trans. Graph. 31, 4, Article Article 75 (July 2012), 10 pages. Google ScholarDigital Library
50. Shuang Zhao, Fujun Luan, and Kavita Bala. 2016. Fitting Procedural Yarn Models for Realistic Cloth Rendering. ACM Trans. Graph. 35, 4, Article Article 51 (July 2016), 11 pages. Google ScholarDigital Library
51. A. Zinke and A. Weber. 2007. Light Scattering from Filaments. IEEE Transactions on Visualization and Computer Graphics 13, 2 (March 2007), 342–356. Google ScholarDigital Library
52. Arno Zinke, Cem Yuksel, Andreas Weber, and John Keyser. 2008. Dual Scattering Approximation for Fast Multiple Scattering in Hair. SIGGRAPH 27, 3 (Aug. 2008), 32:1–32:10. https://doi.org/10/bt33s4Google Scholar


