“Path cuts: efficient rendering of pure specular light transport” by Wang, Hašan and Yan – ACM SIGGRAPH HISTORY ARCHIVES

“Path cuts: efficient rendering of pure specular light transport” by Wang, Hašan and Yan

  • 2020 SA Technical Papers_Wang_Path cuts: efficient rendering of pure specular light transport

Conference:


Type(s):


Title:

    Path cuts: efficient rendering of pure specular light transport

Session/Category Title:   Light Transport: Methods


Presenter(s)/Author(s):



Abstract:


    In scenes lit with sharp point-like light sources, light can bounce several times on specular materials before getting into our eyes, forming purely specular light paths. However, to our knowledge, rendering such multi-bounce pure specular paths has not been handled in previous work: while many light transport methods have been devised to sample various kinds of light paths, none of them are able to find multi-bounce pure specular light paths from a point light to a pinhole camera. In this paper, we present path cuts to efficiently render such light paths. We use a path space hierarchy combined with interval arithmetic bounds to prune non-contributing regions of path space, and to slice the path space into regions small enough to empirically contain at most one solution. Next, we use an automatic differentiation tool and a Newton-based solver to find an admissible specular path within a given path space region. We demonstrate results on several complex specular configurations, including RR, TT, TRT and TTTT paths.

References:


    1. Benedikt Bitterli and Wojciech Jarosz. 2019. Selectively Metropolised Monte Carlo Light Transport Simulation. ACM Trans. Graph. 38, 6, Article 153 (Nov. 2019), 10 pages.Google ScholarDigital Library
    2. Johannes Hanika, Marc Droske, and Luca Fascione. 2015a. Manifold Next Event Estimation. Comput. Graph. Forum 34, 4 (July 2015), 87–97.Google ScholarCross Ref
    3. Johannes Hanika, Anton Kaplanyan, and Carsten Dachsbacher. 2015b. Improved Half Vector Space Light Transport. Comput. Graph. Forum 34, 4 (2015), 65–74.Google ScholarDigital Library
    4. Nicolas Holzschuch. 2015. Accurate computation of single scattering in participating media with refractive boundaries. Computer Graphics Forum 34, 6 (Sept. 2015), 48–59. Google ScholarDigital Library
    5. Homan Igehy. 1999. Tracing Ray Differentials (SIGGRAPH ’99). 179–186.Google Scholar
    6. Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.Google Scholar
    7. Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Jason Lawrence, Ravi Ramamoorthi, and Steve Marschner. 2014. Discrete Stochastic Microfacet Models. ACM Trans. Graph. 33, 4, Article 115 (July 2014), 10 pages. Google ScholarDigital Library
    8. Wenzel Jakob and Steve Marschner. 2012. Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport. ACM Trans. Graph. 31, 4, Article 58 (2012), 58:1–58:13 pages.Google ScholarDigital Library
    9. Anton S. Kaplanyan and Carsten Dachsbacher. 2013. Path Space Regularization for Holistic and Robust Light Transport. Computer Graphics Forum (2013). Google ScholarCross Ref
    10. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. ACM Trans. Graph. 33, 4 (July 2014), 13.Google ScholarDigital Library
    11. R. KRAWCZYK. 1969. Newton-algorithmen zur bestimmung von null- stellen mit fehlerschranken. Computing 4, 3 (1969), 187–201.Google ScholarCross Ref
    12. Alexandr Kuznetsov, Miloš Hašan, Zexiang Xu, Ling-Qi Yan, Bruce Walter, Nima Khademi Kalantari, Steve Marschner, and Ravi Ramamoorthi. 2019. Learning Generative Models for Rendering Specular Microgeometry. ACM Trans. Graph. 38, 6, Article 225 (Nov. 2019), 14 pages. Google ScholarDigital Library
    13. Don Mitchell and Pat Hanrahan. 1992. Illumination from Curved Reflectors. SIGGRAPH Comput. Graph. 26, 2 (1992), 283–291.Google ScholarDigital Library
    14. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford University.Google ScholarDigital Library
    15. Edgar Velázquez-Armendáriz, Shuang Zhao, Miloš Hašan, Bruce Walter, and Kavita Bala. 2009. Automatic Bounding of Programmable Shaders for Efficient Global Illumination. ACM Trans. Graph. 28, 5 (Dec. 2009), 1–9. Google ScholarDigital Library
    16. Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. 2006. Multidimensional Lightcuts. ACM Trans. Graph. 25, 3 (July 2006), 1081–1088. Google ScholarDigital Library
    17. Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and Donald P. Greenberg. 2005. Lightcuts: A Scalable Approach to Illumination. ACM Trans. Graph. 24, 3 (July 2005), 1098–1107. Google ScholarDigital Library
    18. Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007. Microfacet Models for Refraction Through Rough Surfaces (EGSR 07). 195–206.Google ScholarDigital Library
    19. Bruce Walter, Shuang Zhao, Nicolas Holzschuch, and Kavita Bala. 2009. Single Scattering in Refractive Media with Triangle Mesh Boundaries. ACM Trans. Graph. 28, 3, Article 92 (2009), 92:1–92:8 pages.Google ScholarDigital Library
    20. Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi Ramamoorthi. 2014. Rendering Glints on High-resolution Normal-mapped Specular Surfaces. ACM Trans. Graph. 33, 4, Article 116 (2014), 9 pages. Google ScholarDigital Library
    21. Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Positionnormal Distributions for Efficient Rendering of Specular Microstructure. ACM Trans. Graph. 35, 4, Article 56 (2016), 9 pages. Google ScholarDigital Library
    22. Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018. Rendering Specular Microgeometry with Wave Optics. ACM Trans. Graph. 37, 4, Article 75 (July 2018), 10 pages. Google ScholarDigital Library
    23. Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. 2020. Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints. Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020). Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org