“Design and fabrication of freeform holographic optical elements” by Jang, Mercier, Bang, Li, Zhao, et al. … – ACM SIGGRAPH HISTORY ARCHIVES

“Design and fabrication of freeform holographic optical elements” by Jang, Mercier, Bang, Li, Zhao, et al. …

  • 2020 SA Technical Papers_Jang_Design and fabrication of freeform holographic optical elements

Conference:


Type(s):


Title:

    Design and fabrication of freeform holographic optical elements

Session/Category Title:   Computational Holography


Presenter(s)/Author(s):



Abstract:


    Holographic optical elements (HOEs) have a wide range of applications, including their emerging use in virtual and augmented reality displays, but their design and fabrication have remained largely limited to configurations using simple wavefronts. In this paper, we present a pipeline for the design, optimization, and fabrication of complex, customized HOEs that enhances their imaging performance and enables new applications. In particular, we propose an optimization method for grating vector fields that accounts for the unique selectivity properties of HOEs. We further show how our pipeline can be applied to two distinct HOE fabrication methods. The first uses a pair of freeform refractive elements to manufacture HOEs with high optical quality and precision. The second uses a holographic printer with two wavefront-modulating arms, enabling rapid prototyping. We propose a unified wavefront decomposition framework suitable for both fabrication approaches. To demonstrate the versatility of these methods, we fabricate and characterize a series of specialized HOEs, including an aspheric lens, a head-up display lens, a lens array, and, for the first time, a full-color caustic projection element.

References:


    1. Kaan Akşit, Ward Lopes, Jonghyun Kim, Peter Shirley, and David Luebke. 2017. Near-Eye Varifocal Augmented Reality Display Using See-through Screens. ACM Trans. Graph. 36, 6, Article 189 (Nov. 2017), 13 pages.Google ScholarDigital Library
    2. Kaan Akşit, Praneeth Chakravarthula, Kishore Rathinavel, Youngmo Jeong, Rachel Albert, Henry Fuchs, and David Luebke. 2019. Manufacturing application-driven foveated near-eye displays. IEEE Transactions on Visualization and Computer Graphics (2019).Google ScholarCross Ref
    3. Y. Amitai, A. A. Friesem, and V. Weiss. 1990. Designing holographic lenses with different recording and readout wavelengths. J. Opt. Soc. Am. A 7, 1 (Jan 1990), 80–86.Google ScholarCross Ref
    4. Kiseung Bang, Changwon Jang, and Byoungho Lee. 2019. Curved holographic optical elements and applications for curved see-through displays. Journal of Information Display (02 2019), 1–15.Google Scholar
    5. Aaron Bauer, Eric Schiesser, and Jannick Rolland. 2018. Starting geometry creation and design method for freeform optics. Nature Communications 9 (12 2018).Google Scholar
    6. Pierre-Alexandre Blanche, Colton Bigler, Craig Draper, and Micah Mann. 2019. Holographic See-Through Displays. In Digital Holography and Three-Dimensional Imaging 2019. Optical Society of America, M3A.1.Google Scholar
    7. Richard Byrd, Jean Charles Gilbert, and Jorge Nocedal. 2000. A trust region method based on interior point techniques for nonlinear programming. Mathematical Programming 89 (11 2000), 149–185.Google Scholar
    8. D. H. Close. 1975. Holographic optical elements. Opt. Eng. 14, 5 (1975), 145402.Google ScholarCross Ref
    9. H. Coufal, D. Psaltis, and G.T. Sincerbox. 2000. Holographic data storage. Springer.Google Scholar
    10. Gerwin Damberg and Wolfgang Heidrich. 2015. Efficient freeform lens optimization for computational caustic displays. Opt. Express 23, 8 (Apr 2015), 10224–10232.Google ScholarCross Ref
    11. R. C. Fairchild and J. R. Fienup. 1982. Computer-originated aspheric holographic optical elements. Optical Engineering 21, 1 (1982), 133 — 140.Google ScholarCross Ref
    12. Kuan-Hsu Fan-Chiang, Shin-Tson Wu, and Shu-Hsia Chen. 2006. Fringing-field effects on high-resolution liquid crystal microdisplays. Journal of Display Technology (2006).Google Scholar
    13. Fengzhou Fang, Ying Cheng, and Xiaodong Zhang. 2013. Design of freeform optics. Advanced Optical Technologies 2 (12 2013), 445–453.Google Scholar
    14. Kenneth Garrard, Thomas Bruegge, Jeff Hoffman, Thomas Dow, and Alex Sohn. 2005. Design tools for freeform optics. Proc. SPIE 5874 (08 2005).Google ScholarCross Ref
    15. Ralf Haeussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle. 2017. Large real-time holographic 3D displays: Enabling components and results. Applied Optics 56 (05 2017), F45.Google Scholar
    16. Matthew Harker and Paul O’Leary. 2008. Least squares surface reconstruction from measured gradient fields. Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1 — 7.Google ScholarCross Ref
    17. Johannes Hofmann, Anna-Katharina Friedel, Reinhold Fiess, and Wilhelm Stork. 2019. Angle-compensated holographic wave front printing for the fabrication of holographic optical elements operating in the infrared. Optical Engineering 59 (2019).Google Scholar
    18. Keehoon Hong, Jiwoon Yeom, Changwon Jang, Jisoo Hong, and Byoungho Lee. 2014. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality. Optics letters 39 (01 2014), 127–30.Google Scholar
    19. Boaz Jessie Jackin, Lode Jorissen, Ryutaro Oi, Jui Yi Wu, Koki Wakunami, Makoto Okui, Yasuyuki Ichihashi, Philippe Bekaert, Yi Pai Huang, and Kenji Yamamoto. 2018. Digitally designed holographic optical element for light field displays. Opt. Lett. 43, 15 (Aug 2018), 3738–3741.Google ScholarCross Ref
    20. Changwon Jang, Kiseung Bang, Gang Li, and Byoungho Lee. 2018. Holographic near-eye display with expanded eye-box. ACM Transactions on Graphics 37 (2018), 1–14.Google ScholarDigital Library
    21. Changwon Jang, Kiseung Bang, Seokil Moon, Jonghyun Kim, Seungjae Lee, and Byoungho Lee. 2017. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Transactions on Graphics 36, 6 (2017), 190.Google ScholarDigital Library
    22. Daniel Jeon, Seung-Hwan Baek, Shinyoung Yi, Qiang Fu, Xiong Dun, Wolfgang Heidrich, and Min Kim. 2019. Compact snapshot hyperspectral imaging with diffracted rotation. ACM Transactions on Graphics 38 (07 2019), 1–13.Google Scholar
    23. Jinsoo Jeong, Jaebum Cho, Changwon Jang, Chanhyung Yoo, and Byoungho Lee. 2019. Design and fabrication of extended eye-box holographic lens using holographic printer. In Digital Holography and Three-Dimensional Imaging 2019. OSA, W2A.3.Google Scholar
    24. J. Jeong, C. Lee, B. Lee, S. Lee, S. Moon, G. Sung, H. Lee, and B. Lee. 2020. Holographically Printed Freeform Mirror Array for Augmented Reality Near-Eye Display. IEEE Photonics Technology Letters 32, 16 (2020), 991–994.Google ScholarCross Ref
    25. Seyedmahdi Kazempourradi, Erdem Ulusoy, and Hakan Urey. 2019. Full-color computational holographic near-eye display. Journal of Information Display 20, 2 (2019).Google ScholarCross Ref
    26. Jonghyun Kim, Zander Majercik, Peter Shirley, Josef Spjut, Morgan McGuire, David Luebke, Youngmo Jeong, Michael Stengel, Kaan Akşit, Rachel Albert, Ben Boudaoud, Trey Greer, Joohwan Kim, and Ward Lopes. 2019. Foveated AR: dynamically-foveated augmented reality display. ACM Transactions on Graphics 38 (07 2019), 1–15.Google ScholarDigital Library
    27. Youngmin Kim, Elena Stoykova, Hoonjong Kang, Sunghee Hong, Joosup Park, Jiyong Park, and Jisoo Hong. 2015. Seamless full color holographic printing method based on spatial partitioning of SLM. Opt. Express 23, 1 (Jan 2015), 172–182.Google Scholar
    28. H. Kogelnik. 1969. Coupled wave theory for thick hologram gratings. The Bell System Technical Journal 48, 9 (Nov 1969), 2909–2947.Google ScholarCross Ref
    29. George Koulieris, Kaan Akşit, M. Stengel, R. Mantiuk, Katerina Mania, and C. Richardt. 2019. Near-eye display and tracking technologies for virtual and augmented reality. Computer Graphics Forum 38 (05 2019), 493–519.Google Scholar
    30. Seungjae Lee, Changwon Jang, Seokil Moon, Jaebum Cho, and Byoungho Lee. 2016a. Additive light field displays: realization of augmented reality with holographic optical elements. ACM Transactions on Graphics 35 (07 2016), 1–13.Google ScholarDigital Library
    31. Seungjae Lee, Byounghyo Lee, Jaebum Cho, Changwon Jang, Jonghyun Kim, and Byoungho Lee. 2016b. Analysis and implementation of hologram lenses for see-through head-mounted display. IEEE Photonics Technology Letters PP (2016).Google Scholar
    32. Changgeng Liu, Juan Liu, Lei Liu, Xincheng Yao, and Beatrice Pazzucconi. 2018. A holographic waveguide based eye tracker. Proceedings of SPIE-the International Society for Optical Engineering 10474, 65.Google ScholarCross Ref
    33. Andrew Maimone, Andreas Georgiou, and Joel Kollin. 2017. Holographic near-eye displays for virtual and augmented reality. ACM Transactions on Graphics (2017).Google Scholar
    34. Andrew Maimone and Junren Wang. 2020. Holographic optics for thin and. lightweight virtual reality. ACM Trans. Graph. 39, 4 (Jul 2020).Google ScholarDigital Library
    35. Quentin Mérigot, Jocelyn Meyron, and Boris Thibert. 2017. Light in Power: a general and parameter-free algorithm for caustic design. (08 2017).Google Scholar
    36. Hiroshi Mukawa, Katsuyuki Akutsu, Ikuo Matsumura, Satoshi Nakano, Takuji Yoshida, Mieko Kuwahara, Kazuma Aiki, and Masataka Ogawa. 2008. A full Color eyewear display Using holographic planar waveguides. Sid Symposium Digest of Technical Papers 39 (05 2008).Google Scholar
    37. Eduard R Muslimov, Marc Ferrari, Emmanuel Hugot, Jean-Claude Bouret, Coralie Neiner, Simona Lombardo, Gerard R Lemaitre, Robert Grange, and Ilia A Guskov. 2018. Design and modeling of spectrographs with holographic gratings on freeform surfaces. Optical Engineering 57, 12 (2018), 125105.Google ScholarCross Ref
    38. Takashi Oku, Katsuyuki Akutsu, Mieko Kuwahara, Takuji Yoshida, Eisaku Kato, Kazuma Aiki, Ikuo Matsumura, Satoshi Nakano, Akio Machida, and Hiroshi Mukawa. 2015. 15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology. SID Symposium Digest of Technical Papers 46 (06 2015).Google ScholarCross Ref
    39. Haichao Peng, Dewen Cheng, Jian Han, Chen Xu, Weitao Song, Liuzhu Ha, Jian Yang, Quanxing Hu, and Yongtian Wang. 2014. Design and fabrication of a holographic head-up display with asymmetric field of view. Applied Optics 53 (10 2014).Google Scholar
    40. Yifan Peng, Xiong Dun, Qilin Sun, and Wolfgang Heidrich. 2017. Mix-and-match holography. ACM Transactions on Graphics 36 (11 2017), 1–12.Google Scholar
    41. Yifan Peng, Qilin Sun, Xiong Dun, Gordon Wetzstein, Wolfgang Heidrich, and Felix Heide. 2019. Learned large field-of-view imaging with thin-plate optics. ACM Transactions on Graphics 38 (11 2019), 1–14.Google Scholar
    42. Bahaa E A Saleh and Malvin Carl Teich. 2007. Fundamentals of photonics; 2nd ed. Wiley, New York, NY.Google Scholar
    43. Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, and Mark Pauly. 2014. High-contrast computational caustic design. ACM Transactions on Graphics 33 (07 2014).Google Scholar
    44. Hua Shen, Rihong Zhu, Zhishan Gao, E. Y. B. PUN, W. H. Wong, and Xiaoli Zhu. 2013. Design and fabrication of computer-generated holograms for testing optical freeformsurfaces. Chin. Opt. Lett. 11, 3 (Mar 2013), 032201.Google Scholar
    45. Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun, Stephen Boyd, Wolfgang Heidrich, Felix Heide, and Gordon Wetzstein. 2018. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Transactions on Graphics 37 (07 2018), 1–13.Google Scholar
    46. Synopsys. 2020. CodeV. https://www.synopsys.com/optical-solutions/codev.htmlGoogle Scholar
    47. Koki Wakunami, Po-Yuan Hsieh, Ryutaro Oi, Takanori Senoh, Hisayuki Sasaki, Yasuyuki Ichihashi, Makoto Okui, Yi-Pai Huang, and Kenji Yamamoto. 2016. Projection-type see-through holographic three-dimensional display. Nature Communications 7 (2016).Google Scholar
    48. Patrick Wissmann, Se Baek Oh, and George Barbastathis. 2008. Simulation and optimization of volume holographic imaging systems in Zemax®. Optics express 16 (06 2008), 7516–24.Google Scholar
    49. Amnon Yariv and Pochi Yeh. 1983. Optical waves in crystals: propagation and control of laser radiation.Google Scholar
    50. Genzhi Ye, Sundeep Jolly, V. Michael Bove Jr, Qionghai Dai, Ramesh Raskar, and Gordon Wetzstein. 2014. Toward BxDF display using multilayer diffraction. ACM Transactions on Graphics 33 (11 2014), 1–14.Google Scholar
    51. Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, and Tomoyuki Nishita. 2014. Poisson-based continuous surface generation for goal-based caustics. ACM Transactions on Graphics (TOG) 33, 3 (2014), 31.Google ScholarDigital Library
    52. Zebra Imaging. 2020. Zebra Imaging. http://www.zebraimaging.com/Google Scholar
    53. Zemax. 2020. Optics Studio. https://www.zemax.com/Google Scholar


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org