“RBF liquids: an adaptive PIC solver using RBF-FD” by Nakanishi, Nascimento, Campos, Pagliosa and Paiva – ACM SIGGRAPH HISTORY ARCHIVES

“RBF liquids: an adaptive PIC solver using RBF-FD” by Nakanishi, Nascimento, Campos, Pagliosa and Paiva

  • 2020 SA Technical Papers_Nakanishi_RBF liquids: an adaptive PIC solver using RBF-FD

Conference:


Type(s):


Title:

    RBF liquids: an adaptive PIC solver using RBF-FD

Session/Category Title:   Animation: Fluid


Presenter(s)/Author(s):



Abstract:


    We introduce a novel liquid simulation approach that combines a spatially adaptive pressure projection solver with the Particle-in-Cell (PIC) method. The solver relies on a generalized version of the Finite Difference (FD) method to approximate the pressure field and its gradients in tree-based grid discretizations, possibly non-graded. In our approach, FD stencils are computed by using meshfree interpolations provided by a variant of Radial Basis Function (RBF), known as RBF-Finite-Difference (RBF-FD). This meshfree version of the FD produces differentiation weights on scattered nodes with high-order accuracy. Our method adapts a quadtree/octree dynamically in a narrow-band around the liquid interface, providing an adaptive particle sampling for the PIC advection step. Furthermore, RBF affords an accurate scheme for velocity transfer between the grid and particles, keeping the system’s stability and avoiding numerical dissipation. We also present a data structure that connects the spatial subdivision of a quadtree/octree with the topology of its corresponding dual-graph. Our data structure makes the setup of stencils straightforward, allowing its updating without the need to rebuild it from scratch at each time-step. We show the effectiveness and accuracy of our solver by simulating incompressible inviscid fluids and comparing results with regular PIC-based solvers available in the literature.

References:


    1. M. Aanjaneya, M. Gao, H. Liu, C. Batty, and E. Sifakis. 2017. Power diagrams and sparse paged grids for high resolution adaptive liquids. ACM Trans. Graph. 36, 4 (2017), 1–12.Google ScholarDigital Library
    2. B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3 (2007).Google ScholarDigital Library
    3. R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. Vis. Comput. Graph. 18, 8 (2012), 1202–1214.Google ScholarDigital Library
    4. R. Ando, N. Thürey, and C. Wojtan. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans. Graph. 32, 4 (2013), 103:1–103:10.Google ScholarDigital Library
    5. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. 1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM.Google Scholar
    6. C. Batty. 2017. A cell-centred finite volume method for the Poisson problem on non-graded quadtrees with second order accurate gradients. J. Comput. Phys. 331 (2017), 49–72.Google ScholarDigital Library
    7. C. Batty, S. Xenos, and B. Houston. 2010. Tetrahedral embedded boundary methods for accurate and flexible adaptive fluids. Comput. Graph. Forum 29, 2 (2010), 695–704.Google ScholarCross Ref
    8. V. Bayona, N. Flyer, and B. Fornberg. 2019. On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries. J. Comput. Phys. 380 (2019), 378 — 399.Google ScholarDigital Library
    9. V. Bayona, N. Flyer, B. Fornberg, and G. A. Barnett. 2017. On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332 (2017), 257–273.Google ScholarCross Ref
    10. R. Bridson. 2015. Fluid Simulation (2nd ed.). A. K. Peters.Google Scholar
    11. T. Brochu, C. Batty, and R. Bridson. 2010. Matching fluid simulation elements to surface geometry and topology. In ACM Trans. Graph., Vol. 29.Google ScholarDigital Library
    12. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans. 2001. Reconstruction and representation of 3D objects with radial basis functions. In SIGGRAPH ’01. ACM, 67–76.Google Scholar
    13. N. Chentanez, B. E. Feldman, F. Labelle, J. F. O’Brien, and J. R. Shewchuk. 2007. Liquid Simulation on Lattice-Based Tetrahedral Meshes. In SCA ’07. 219–228.Google Scholar
    14. N. Chentanez and M. Müller. 2011. Real-time Eulerian water simulation using a restricted tall cell grid. In ACM Trans. Graph., Vol. 30. 82:1–82:10.Google ScholarDigital Library
    15. F. Da, D. Hahn, C. Batty, C. Wojtan, and E. Grinspun. 2016. Surface-only liquids. ACM Trans. Graph. 35, 4 (2016), 1–12.Google ScholarDigital Library
    16. E. Edwards and R. Bridson. 2012. A high-order accurate particle-in-cell method. Int. J. Numer. Meth. Eng. 90, 9 (2012), 1073–1088.Google ScholarCross Ref
    17. S. Elliott, R. R. P. Kumar, N. Flyer, T. Ta, and R. Loft. 2019. Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods. Int. J. High Perform. Comput. Appl. 33, 4 (2019), 619–631.Google ScholarDigital Library
    18. D. Enright, D. Nguyen, F. Gibou, and R. Fedkiw. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. of the 4th ASME-JSME Joint Fluids Engineering Conference. 337–342.Google Scholar
    19. G. F. Fasshauer. 2007. Meshfree Approximation Methods with MATLAB. World Scientific.Google Scholar
    20. F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey. 2016. Narrow band FLIP for liquid simulations. Comput. Graph. Forum 35, 2 (2016), 225–232.Google ScholarCross Ref
    21. F. Ferstl, R. Westermann, and C. Dick. 2014. Large-scale liquid simulation on adaptive hexahedral grids. IEEE Trans. Vis. Comput. Graph. 20, 10 (2014), 1405–1417.Google ScholarCross Ref
    22. N. Flyer, G. A. Barnett, and L. J. Wicker. 2016a. Enhancing finite differences with radial basis functions: experiments on the Navier-Stokes equations. J. Comput. Phys. 316 (2016), 39–62.Google ScholarDigital Library
    23. N. Flyer, B. Fornberg, V. Bayona, and G. A. Barnett. 2016b. On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321 (2016), 21–38.Google ScholarDigital Library
    24. B. Fornberg and N. Flyer. 2015. Solving PDEs with radial basis functions. Acta Numerica 24 (2015), 215–258.Google ScholarCross Ref
    25. M. Gao, A. P. Tampubolon, C. Jiang, and E. Sifakis. 2017. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans. Graph. 36, 6 (2017), 1–12.Google ScholarDigital Library
    26. R. Goldade, Y. Wang, M. Aanjaneya, and C. Batty. 2019. An adaptive variational finite difference framework for efficient symmetric octree viscosity. ACM Trans. Graph. 38, 4 (2019).Google ScholarDigital Library
    27. G. Guennebaud, B. Jacob, and Others. 2010. Eigen v3. http://eigen.tuxfamily.org.Google Scholar
    28. A. Guittet, M. Theillard, and F. Gibou. 2015. A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive quad/octrees. J. Comput. Phys. 292 (2015), 215–238.Google ScholarDigital Library
    29. W. Hong, D. H. House, and J. Keyser. 2009. An Adaptive Sampling Approach to Incompressible Particle-Based Fluid. Ph.D. Dissertation. Texas A & M University.Google Scholar
    30. M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner. 2014. SPH Fluids in Computer Graphics. In Eurographics 2014 – State of the Art Reports.Google Scholar
    31. G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25, 3 (2006), 805–811.Google ScholarDigital Library
    32. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34, 4 (2015), 51:1–51:10.Google ScholarDigital Library
    33. D. Kim. 2016. Fluid Engine Development. CRC Press.Google Scholar
    34. B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’Brien. 2006. Fluid animation with dynamic meshes. In ACM Trans. Graph., Vol. 25. 820–825.Google ScholarDigital Library
    35. F. Losasso, R. Fedkiw, and S. Osher. 2006. Spatially adaptive techniques for level set methods and incompressible flow. Computers & Fluids 35, 10 (2006), 995 — 1010.Google ScholarCross Ref
    36. F. Losasso, F. Gibou, and R. Fedkiw. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 3 (2004), 457–462.Google ScholarDigital Library
    37. I. Macêdo, J. P. Gois, and L. Velho. 2011. Hermite radial basis functions implicits. Comput. Graph. Forum 30, 1 (2011), 27–42.Google ScholarCross Ref
    38. P. L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M. P. Cani. 2017. Adaptive physically based models in computer graphics. Comput. Graph. Forum 36, 6 (2017), 312–337.Google ScholarDigital Library
    39. S. McKee, M. F. Tomé, V. G. Ferreira, J. A. Cuminato, A. Castelo, F. S. Sousa, and N. Mangiavacchi. 2008. The MAC method. Computers & Fluids 37, 8 (2008), 907–930.Google ScholarCross Ref
    40. C. Min and F. Gibou. 2007. A second order accurate level set method on non-graded adaptive cartesian grids. J. Comput. Phys. 225, 1 (2007), 300–321.Google ScholarDigital Library
    41. C. Min, F. Gibou, and H. D. Ceniceros. 2006. A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids. J. Comput. Phys. 218, 1 (2006), 123–140.Google ScholarDigital Library
    42. Y. T. Ng, C. Min, and F. Gibou. 2009. An efficient fluid-solid coupling algorithm for single-phase flows. J. Comput. Phys. 228, 23 (2009), 8807–8829.Google ScholarDigital Library
    43. M. B. Nielsen and R. Bridson. 2016. Spatially adaptive FLIP fluid simulations in Bifrost. In ACM SIGGRAPH 2016 Talks. 41:1–41:2.Google Scholar
    44. Y. Ohtake, A. Belyaev, and H. Seidel. 2005. 3D scattered data interpolation and approximation with multilevel compactly supported RBFs. Graph. Models 67, 3 (2005), 150–165.Google ScholarDigital Library
    45. M. A. Olshanskii, K. M. Terekhov, and Y. V. Vassilevski. 2013. An octree-based solver for the incompressible Navier-Stokes equations with enhanced stability and low dissipation. Computers & Fluids 84 (2013), 231–246.Google ScholarCross Ref
    46. M. Sandim, D. Cedrim, L. G. Nonato, P. Pagliosa, and A. Paiva. 2016. Boundary detection in particle-based fluids. Comput. Graph. Forum 35, 2 (2016), 215–224.Google ScholarCross Ref
    47. M. Sandim, N. Oe, D. Cedrim, P. Pagliosa, and A. Paiva. 2019. Boundary particle resampling for surface reconstruction in liquid animation. Computers & Graphics 84 (2019), 55 — 65.Google ScholarDigital Library
    48. M. Sandim, A. Paiva, and L. H. de Figueiredo. 2020. Simple and reliable boundary detection for meshfree particle methods using interval analysis. J. Comput. Phys. 420 (2020), 109702.Google ScholarCross Ref
    49. T. Sato, C. Wojtan, N. Thuerey, T. Igarashi, and R. Ando. 2018. Extended narrow band FLIP for liquid simulations. Comput. Graph. Forum 37, 2 (2018), 169–177.Google ScholarCross Ref
    50. B. Seibold. 2008. Minimal positive stencils in meshfree finite difference methods for the Poisson equation. Comput. Methods Appl. Mech. Eng. 198, 3–4 (2008), 592–601.Google ScholarCross Ref
    51. R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. 2014. SPGrid: a sparse paged grid structure applied to adaptive smoke simulation. ACM Trans. Graph. 33, 6 (2014).Google ScholarDigital Library
    52. F. Sin, A. W. Bargteil, and J. K. Hodgins. 2009. A point-based method for animating incompressible flow. In SCA ’09. 247–255.Google Scholar
    53. B. Solenthaler and M. Gross. 2011. Two-scale particle simulation. ACM Trans. Graph. 30, 4 (2011), 81:1–81:8.Google ScholarDigital Library
    54. F. S. Sousa, C. F. Lages, J. L. Ansoni, A. Castelo, and A. Simao. 2019. A finite difference method with meshless interpolation for incompressible flows in non-graded tree-based grids. J. Comput. Phys. 396 (2019), 848–866.Google ScholarCross Ref
    55. J. Stam. 1999. Stable fluids. In Proc. of SIGGRAPH ’99. ACM, 121–128.Google ScholarDigital Library
    56. G. Turk and J. F. O’Brien. 2002. Modelling with implicit surfaces that interpolate. ACM Trans. Graph. 21, 4 (2002), 855–873.Google ScholarDigital Library
    57. R. Winchenbach, H. Hochstetter, and A. Kolb. 2017. Infinite continuous adaptivity for incompressible SPH. ACM Trans. Graph. 36, 4 (2017), 102:1–102:10.Google ScholarDigital Library
    58. G. B. Wright and B. Fornberg. 2006. Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212, 1 (2006), 99–123.Google ScholarDigital Library
    59. T. Yang, J. Chang, B. Ren, M. C. Lin, J. J. Zhang, and S. Hu. 2015. Fast Multiple-Fluid Simulation Using Helmholtz Free Energy. ACM Trans. Graph. 34, 6 (2015).Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org