“Dual strip weaving: interactive design of quad layouts using elastica strips” by Campen and Kobbelt – ACM SIGGRAPH HISTORY ARCHIVES

“Dual strip weaving: interactive design of quad layouts using elastica strips” by Campen and Kobbelt

  • 2014 SA Technical Papers Campen_Dual Strip Weaving

Conference:


Type(s):


Title:

    Dual strip weaving: interactive design of quad layouts using elastica strips

Session/Category Title:   Meshing Surface, and Meshing


Presenter(s)/Author(s):



Abstract:


    We introduce Dual Strip Weaving, a novel concept for the interactive design of quad layouts, i.e. partitionings of freeform surfaces into quadrilateral patch networks. In contrast to established tools for the design of quad layouts or subdivision base meshes, which are often based on creating individual vertices, edges, and quads, our method takes a more global perspective, operating on a higher level of abstraction: the atomic operation of our method is the creation of an entire cyclic strip, delineating a large number of quad patches at once. The global consistency-preserving nature of this approach reduces demands on the user’s expertise by requiring less advance planning. Efficiency is achieved using a novel method at the heart of our system, which automatically proposes geometrically and topologically suitable strips to the user. Based on this we provide interaction tools to influence the design process to any desired degree and visual guides to support the user in this task.

References:


    1. Beineke, L. W. 1968. Derived graphs of digraphs. In Beiträge zur Graphentheorie. Teubner, Leipzig, 17–33.
    2. Bischoff, S., Weyand, T., and Kobbelt, L. 2005. Snakes on triangle meshes. In Bildverarbeitung für die Medizin, 208–212.
    3. Boier-Martin, I. M., Rushmeier, H. E., and Jin, J. 2004. Parameterization of triangle meshes over quadrilateral domains. In Proc. SGP ’04, 197–208.
    4. Bommes, D., Vossemer, T., and Kobbelt, L. 2008. Quadrangular parameterization for reverse engineering. Mathematical Methods for Curves and Surfaces, 55–69.
    5. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. In Proc. SIGGRAPH 2009, 1–10.
    6. Bommes, D., Lempfer, T., and Kobbelt, L. 2011. Global structure optimization of quadrilateral meshes. Computer Graphics Forum 30, 2, 375–384.Cross Ref
    7. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2013. Quad-mesh generation and processing: A survey. Computer Graphics Forum 32, 6, 51–76.
    8. Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., and Kobbelt, L. 2013. Integer-grid maps for reliable quad meshing. In Proc. SIGGRAPH 2013, 98:1–98:12.
    9. Bruckstein, A., Netravali, A., and Richardson, T. 2001. Epi-convergence of discrete elastica. Appl.Analysis 79, 137–171.Cross Ref
    10. Campen, M., and Kobbelt, L. 2014. Quad layout embedding via aligned parameterization. Computer Graphics Forum.
    11. Campen, M., Bommes, D., and Kobbelt, L. 2012. Dual loops meshing: quality quad layouts on manifolds. In Proc. SIGGRAPH 2012, 110:1–110:11.
    12. Cohen-Steiner, D., and Morvan, J.-M. 2003. Restricted delaunay triangulations and normal cycle. In Proc. Symp. Comp. Geom., SCG ’03, 312–321.
    13. Daniels, J., Silva, C. T., and Cohen, E. 2009. Semi-regular quadrilateral-only remeshing from simplified base domains. Comput. Graph. Forum 28, 5, 1427–1435.
    14. Diamanti, O., Vaxman, A., Panozzo, D., and Sorkine-Hornung, O. Designing N-PolyVector fields with complex polynomials. Computer Graphics Forum 33, 5, 1–11.
    15. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. 2006. Spectral surface quadrangulation. In Proc. SIGGRAPH 2006, 1057–1066.
    16. Ebke, H.-C., Campen, M., Bommes, D., and Kobbelt, L. 2014. Level-of-detail quad meshing. In Proc. SIGGRAPH Asia 2014.
    17. Eck, M., and Hoppe, H. 1996. Automatic reconstruction of B-spline surfaces of arbitrary topological type. In Proc. SIGGRAPH 96, 325–334.
    18. Hofer, M., and Pottmann, H. 2004. Energy-minimizing splines in manifolds. ACM Trans. Graph. 23, 3, 284–293.
    19. Ji, Z., Liu, L., and Wang, Y. 2010. B-mesh: A modeling system for base meshes of 3d articulated shapes. In Proc. Pacific Graphics ’10, 2169–2178.
    20. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quadcover – surface parameterization using branched coverings. Computer Graphics Forum 26, 3, 375–384.Cross Ref
    21. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally optimal direction fields. ACM Trans. Gra. 32, 4.
    22. Kovacs, D., Myles, A., and Zorin, D. 2011. Anisotropic quadrangulation. Comp. Aided Geom. Design 28, 8, 449–462.
    23. Krishnamurthy, V., and Levoy, M. 1996. Fitting smooth surfaces to dense polygon meshes. In Proc. SIGGRAPH 96, 313–324.
    24. Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., and Gu, X. 2010. Metric-driven rosy field design and remeshing. IEEE Trans. Vis. Comput. Graph. 16, 1, 95–108.
    25. Lee, Y., and Lee, S. 2002. Geometric snakes for triangular meshes. Comput. Graph. Forum 21, 3, 229–238.Cross Ref
    26. Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: Multiresolution adaptive parameterization of surfaces. In Proc. SIGGRAPH ’98, 95–104.
    27. Li, W.-C., Ray, N., and Lévy, B. 2006. Automatic and interactive mesh to t-spline conversion. In Proc. SGP ’06, 191–200.
    28. Mitra, N. J., Pauly, M., Wand, M., and Ceylan, D. 2013. Symmetry in 3d geometry: Extraction and applications. Comput. Graph. Forum 32, 6, 1–23.
    29. Murdoch, P., Benzley, S., Blacker, T., and Mitchell, S. A. 1997. The spatial twist continuum: a connectivity based method for representing all-hexahedral finite element meshes. Finite Elem. Anal. Des. 28, 137–149.
    30. Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. 2010. Feature-aligned T-meshes. In Proc. SIGGRAPH 2010, 117:1–117:11.
    31. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. In Proc. SIGGRAPH 2007, 55:1–55:10.
    32. Panozzo, D., Lipman, Y., Puppo, E., and Zorin, D. 2012. Fields on symmetric surfaces. In Proc. SIGGRAPH 2012, 111.
    33. Panozzo, D., Baran, I., Diamanti, O., and Sorkine-Hornung, O. 2013. Weighted averages on surfaces. ACM Trans. Graph. 32, 4, 60:1–60:12.
    34. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1:1–1:11.
    35. Schmidt, R. 2013. Stroke parameterization. Comp. Graph. Forum 32, 2, 255–263.Cross Ref
    36. Schoenemann, T., and Cremers, D. 2007. Introducing curvature into globally optimal image segmentation: Minimum ratio cycles on product graphs. In Proc. ICCV 2007, 1–6.
    37. Schoenemann, T., Masnou, S., and Cremers, D. 2011. The elastic ratio: Introducing curvature into ratio-based image segmentation. IEEE Trans. Img. Proc. 20, 9, 2565–2581.
    38. Takayama, K., Panozzo, D., Sorkine-Hornung, A., and Sorkine-Hornung, O. 2013. Sketch-based generation and editing of quad meshes. In Proc. SIGGRAPH 2013, 97:1–97:8.
    39. Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and Cignoni, P. 2011. Simple quad domains for field aligned mesh parametrization. Proc. SIGGRAPH Asia 2011, 142:1–142:12.
    40. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Proc. SGP ’06, 201–210.
    41. Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. A wave-based anisotropic quadrangulation method. In Proc. SIGGRAPH 2010, 118:1–118:8.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org