“A framework for transient rendering” by Jarabo, Marco, Muñoz, Buisan, Jarosz, et al. …
Conference:
Type(s):
Title:
- A framework for transient rendering
Session/Category Title: Light In, Light Out
Presenter(s)/Author(s):
Abstract:
Recent advances in ultra-fast imaging have triggered many promising applications in graphics and vision, such as capturing transparent objects, estimating hidden geometry and materials, or visualizing light in motion. There is, however, very little work regarding the effective simulation and analysis of transient light transport, where the speed of light can no longer be considered infinite. We first introduce the transient path integral framework, formally describing light transport in transient state. We then analyze the difficulties arising when considering the light’s time-of-flight in the simulation (rendering) of images and videos. We propose a novel density estimation technique that allows reusing sampled paths to reconstruct time-resolved radiance, and devise new sampling strategies that take into account the distribution of radiance along time in participating media. We then efficiently simulate time-resolved phenomena (such as caustic propagation, fluorescence or temporal chromatic dispersion), which can help design future ultra-fast imaging devices using an analysis-by-synthesis approach, as well as to achieve a better understanding of the nature of light transport.
References:
1. Ament, M., Bergmann, C., and Weiskopf, D. 2014. Refractive radiative transfer equation. ACM Trans. Graph. 33, 2.
2. Antani, L., Chandak, A., Taylor, M., and Manocha, D. 2012. Direct-to-indirect acoustic radiance transfer. IEEE Transactions on Visualization and Computer Graphics 18, 2.
3. Bertram, M., Deines, E., Mohring, J., Jegorovs, J., and Hagen, H. 2005. Phonon tracing for auralization and visualization of sound. In IEEE Visualization ’05.
4. Cammarano, M., and Jensen, H. W. 2002. Time dependent photon mapping. In Eurographics Workshop on Rendering ’02.
5. D’Eon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30, 4.
6. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. 24, 3.
7. Dutré, P., Bala, K., and Bekaert, P. 2006. Advanced Global Illumination. AK Peters.
8. Funkhouser, T., Tsingos, N., and Jot, J.-M. 2003. Survey of methods for modeling sound propagation in interactive virtual environment systems. Presence and Teleoperation Tongthong.
9. Georgiev, I., Křivánek, J., Hachisuka, T., Nowrouzezahrai, D., and Jarosz, W. 2013. Joint importance sampling of low-order volumetric scattering. ACM Trans. Graph. 32, 6.
10. Gondek, J. S., Meyer, G. W., and Newman, J. G. 1994. Wavelength dependent reflectance functions. In SIGGRAPH ’94.
11. Gutierrez, D., Muñoz, A., Anson, O., and Seron, F. 2005. Non-linear volume photon mapping. In Eurographics Symposium on Rendering ’05.
12. Gutierrez, D., Narasimhan, S. G., Jensen, H. W., and Jarosz, W. 2008. Scattering. In ACM SIGGRAPH ASIA 2008 Courses.
13. Gutierrez, D., Seron, F., Muñoz, A., and Anson, O. 2008. Visualizing underwater ocean optics. Computer Graphics Forum 27, 2.Cross Ref
14. Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Trans. Graph. 28, 5.
15. Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. Graph. 27, 5.
16. Hachisuka, T., Jarosz, W., and Jensen, H. W. 2010. A progressive error estimation framework for photon density estimation. ACM Trans. Graph. 29, 6.
17. Heide, F., Hullin, M., Gregson, J., and Heidrich, W. 2013. Low-budget transient imaging using photonic mixer devices. ACM Trans. Graph. 32, 4.
18. Ihrke, I., Ziegler, G., Tevs, A., Theobalt, C., Magnor, M., and Seidel, H.-P. 2007. Eikonal rendering: Efficient light transport in refractive objects. ACM Trans. Graph. 26, 3.
19. Jarabo, A., Masia, B., Velten, A., Barsi, C., Raskar, R., and Gutierrez, D. 2013. Rendering relativistic effects in transient imaging. In congreso Español de Informática Gráfica (CEIG’13).
20. Jarabo, A. 2012. Femto-photography: Visualizing light in motion. Master’s thesis, Universidad de Zaragoza.
21. Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Trans. Graph. 30, 1.
22. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P.-P., and Zwicker, M. 2011. Progressive photon beams. ACM Trans. Graph. 30, 6.
23. Jarosz, W., Schönefeld, V., Kobbelt, L., and Jensen, H. W. 2012. Theory, analysis and applications of 2D global illumination. ACM Trans. Graph. 31, 5.
24. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. AK Peters.
25. Kadambi, A., Whyte, R., Bhandari, A., Streeter, L., Barsi, C., Dorrington, A., and Raskar, R. 2013. Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles. ACM Trans. Graph. 32, 6.
26. Kalli, H., and Cashwell, E. 1977. Evaluation of three Monte Carlo estimation schemes for flux at a point. Tech. Rep. LA-6865-MS, Los Alamos Scientific Lab, New Mexico, USA.
27. Kaplanyan, A. S., and Dachsbacher, C. 2013. Adaptive progressive photon mapping. ACM Trans. Graph. 32, 2.
28. Keller, M., and Kolb, A. 2009. Real-time simulation of time-of-flight sensors. Simulation Modelling Practice and Theory 17, 5.Cross Ref
29. Kirmani, A., Hutchison, T., Davis, J., and Raskar, R. 2011. Looking around the corner using ultrafast transient imaging. International Journal of Computer Vision 95, 1.
30. Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 3.
31. Kolb, A., Barth, E., Koch, R., and Larsen, R. 2010. Time-of-flight sensors in computer graphics. Computer Graphics Forum 29, 1.Cross Ref
32. Křivánek, J., Georgiev, I., Hachisuka, T., Vévoda, P., Šik, M., Nowrouzezahrai, D., and Jarosz, W. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph. 33, 4.
33. Kulla, C., and Fajardo, M. 2012. Importance sampling techniques for path tracing in participating media. Computer Graphics Forum 31, 4.
34. Křivánek, J., Georgiev, I., Kaplanyan, A. S., and Cañada, J. 2013. Recent advances in light transport simulation: theory & practice. In ACM SIGGRAPH 2013 Courses.
35. Latorre, P., Seron, F., and Gutierrez, D. 2012. Birefringency: Calculation of refracted ray paths in biaxial crystals. The Visual Computer 28, 4.
36. Lin, J., Liu, Y., Hullin, M. B., and Dai, Q. 2014. Fourier analysis on transient imaging with a multifrequency time-of-flight camera. In IEEE Conference on Computer Vision and Pattern Recognition ’14.
37. Mitra, K., and Kumar, S. 1999. Development and comparison of models for light-pulse transport through scattering-absorbing media. Appl Op 38, 1.
38. Musbach, A., Meyer, G. W., Reitich, F., and Oh, S. H. 2013. Full wave modelling of light propagation and reflection. Computer Graphics Forum 32, 6.
39. Naik, N., Zhao, S., Velten, A., Raskar, R., and Bala, K. 2011. Single view reflectance capture using multiplexed scattering and time-of-flight imaging. ACM Trans. Graph. 30.
40. Navarro, F., Seron, F., and Gutierrez, D. 2011. Motion blur rendering: State of the art. Computer Graphics Forum 30, 1.Cross Ref
41. Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W. 2012. Virtual ray lights for rendering scenes with participating media. ACM Trans. Graph. 31, 4.
42. O’Toole, M., Heide, F., Xiao, L., Hullin, M. B., Heidrich, W., and Kutulakos, K. N. 2014. Temporal frequency probing for 5d transient analysis of global light transport. ACM Trans. Graph. 33, 4.
43. Perlin, K. 2002. Improving noise. ACM Trans. Graph. 21, 3.
44. Ramamoorthi, R., Mahajan, D., and Belhumeur, P. 2007. A first-order analysis of lighting, shading, and shadows. ACM Trans. Graph. 26, 1.
45. Raskar, R., and Davis, J. 2008. 5d time-light transport matrix: What can we reason about scene properties? Tech. rep., MIT.
46. Rief, H., Dubi, A., and Elperin, T. 1984. Track length estimation applied to point detector. Nuclear Science and Engineering 87.
47. Sadeghi, I., Muñoz, A., Laven, P., Jarosz, W., Seron, F., Gutierrez, D., and Jensen, H. W. 2012. Physically-based simulation of rainbows. ACM Trans. Graph. 31, 1.
48. Scott, D. W. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.
49. Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. 2007. The room acoustic rendering equation. J. Acoust. Soc. Am. 122, 3.Cross Ref
50. Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. Taylor & Francis.
51. Smith, A., Skorupski, J., and Davis, J. 2008. Transient rendering. Tech. Rep. UCSC-SOE-08-26, School of Engineering, University of California, Santa Cruz.
52. Veach, E., and Guibas, L. J. 1995. Optimally combining sampling techniques for Monte Carlo rendering. In SIGGRAPH ’95.
53. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In SIGGRAPH ’97.
54. Veach, E. 1997. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford.
55. Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M. G., and Raskar, R. 2012. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature Communications, 3.
56. Velten, A., Wu, D., Jarabo, A., Masia, B., Barsi, C., Lawson, E., Joshi, C., Gutierrez, D., Bawendi, M. G., and Raskar, R. 2012. Relativistic ultrafast rendering using time-of-flight imaging. In ACM SIGGRAPH 2012 Talks.
57. Velten, A., Wu, D., Jarabo, A., Masia, B., Barsi, C., Joshi, C., Lawson, E., Bawendi, M., Gutierrez, D., and Raskar, R. 2013. Femto-photography: Capturing and visualizing the propagation of light. ACM Trans. Graph. 32, 4.
58. Weidlich, A., and Wilkie, A. 2008. Realistic rendering of birefringency in uniaxial crystals. ACM Trans. Graph. 27, 1.
59. Weiskopf, D., Kraus, U., and Ruder, H. 1999. Searchlight and doppler effects in the visualization of special relativity: a corrected derivation of the transformation of radiance. ACM Trans. Graph. 18, 3.
60. Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In SIGGRAPH ’92.
61. Wilkie, A., Tobler, R. F., and Purgathofer, W. 2001. Combined rendering of polarization and fluorescence effects. In Eurographics Workshop on Rendering Techniques ’01.
62. Wu, D., Wetzstein, G., Barsi, C., Willwacher, T., O’Toole, M., Naik, N., Dai, Q., Kutulakos, K., and Raskar, R. 2012. Frequency analysis of transient light transport with applications in bare sensor imaging. In European Conference on Computer Vision ’12.
63. Wu, D., Velten, A., O’Toole, M., Masia, B., Agrawal, A., Dai, Q., and Raskar, R. 2013. Decomposing global light transport using time of flight imaging. International Journal of Computer Vision 105, 3.
64. Yoo, K. M., and Alfano, R. R. 1990. Time-resolved coherent and incoherent components of forward light scattering in random media. Opt. Lett. 15, 6.Cross Ref
65. Zhang, Y., Yi, H., and Tan, H. 2013. One-dimensional transient radiative transfer by lattice Boltzmann method. Optics Express 21, 21.
66. Zhu, C., and Liu, Q. 2013. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt. 18, 5.Cross Ref


