“A metric of visual comfort for stereoscopic motion” – ACM SIGGRAPH HISTORY ARCHIVES

“A metric of visual comfort for stereoscopic motion”

  • 2013 SA Technical Papers_Du_A Metric of Visual Comfort for Stereoscopic Motion

Conference:


Type(s):


Title:

    A metric of visual comfort for stereoscopic motion

Session/Category Title:   Eyes Wide Open


Presenter(s)/Author(s):



Abstract:


    We propose a novel metric of visual comfort for stereoscopic motion, based on a series of systematic perceptual experiments. We take into account disparity, motion in depth, motion on the screen plane, and the spatial frequency of luminance contrast. We further derive a comfort metric to predict the comfort of short stereoscopic videos. We validate it on both controlled scenes and real videos available on the internet, and show how all the factors we take into account, as well as their interactions, affect viewing comfort. Last, we propose various applications that can benefit from our comfort measurements and metric.

References:


    1. Bahill, A. T., and Stark, L. 1975. Overlapping saccades and glissades are produced by fatigue in the saccadic eye movement system. Exp Neurol 48, 1, 95–106.
    2. Barkowsky, M., Bialkowski, J., Eskofier, B., Bitto, R., and Kaup, A. 2009. Temporal trajectory aware video quality measure. IEEE Journal of Selected Topics in Signal Processing 3, 2, 266–279.
    3. Cheng, M.-M., Zhang, G.-X., Mitra, N. J., Huang, X., and Hu, S.-M. 2011. Global contrast based salient region detection. In IEEE CVPR, 409–416.
    4. Cho, S.-H., and Kang, H.-B. 2012. Subjective evaluation of visual discomfort caused from stereoscopic 3d video using perceptual importance map. In TENCON 2012 – 2012 IEEE Region 10 Conference, 1–6.
    5. Cutting, J. E., and Vishton, P. M. 1995. Perception of Space and Motion. Academic Press, ch. Perceiving Layout and Knowing Distances: The integration, relative potency, and contextual use of different information about depth.
    6. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2011. A perceptual model for disparity. ACM Trans. on Graph. 30, 4.
    7. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., Seidel, H.-P., and Matusik, W. 2012. A luminance-contrast-aware disparity model and applications. ACM Trans. Graph. 31, 6, 184:1–184:10.
    8. Do, L., Zinger, S., and de With, P. H. N. 2011. Warping error analysis and reduction for depth-image-based rendering in 3dtv. vol. 7863, 78630B-78630B-9.
    9. Ebert, D. S., Shaw, C. D., Zwa, A., and Starr, C. 1996. Two-handed interactive stereoscopic visualization. In IEEE Visualization.
    10. Heinzle, S., Greisen, P., Gallup, D., Chen, C., Saner, D., Smolic, A., Burg, A., Matusik, W., and Gross, M. 2011. Computational stereo camera system with programmable control loop. ACM Transactions on Graphics 30, 94:1–10.
    11. Hess, R. F., Kingdom, F. A. A., and Ziegler, L. R. 1999. On the relationship between the spatial channels for luminance and disparity processing. Vision Research 39, 559–68.
    12. Hoffman, D. M., Girshick, A. R., Akeley, K., and Banks, M. S. 2008. VergenceCaccommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision 8, 3.
    13. Hoffman, D. M., Karasev, V. I., and Banks, M. S. 2011. Temporal presentation protocols in stereoscopic displays: Flicker visibility, perceived motion, and perceived depth. Journal of the Society for Information Display, 271–297.
    14. Howard, I. P., and Rogers, B. J. 2002. Seeing in Depth. Volume 2: Depth Perception. I Porteous.
    15. Jin, E. W., Miller, M. E., Endrikhovski, S., and Cerosaletti, C. D. 2005. Creating a comfortable stereoscopic viewing experience: effects of viewing distance and field of view on fusional range. Proc. SPIE 5664, 10–21.
    16. Jin, E. W., Miller, M. E., and Bolin, M. R. 2006. Tolerance of misalignment in stereoscopic systems. Proc. ICIS, 370–373.
    17. Johnson, A. E., Leigh, J., Morin, P., and Keken, P. V. 2006. GeoWall: Stereoscopic Visualization for Geoscience Research and Education. IEEE Computer Graphics and Applications 26, 10–14.
    18. Jones, G., Lee, D., Holliman, N., and Ezra, D. 2001. Controlling perceived depth in stereoscopic images. Proceedings of SPIE 4297, 42–53.
    19. Julesz, B. 2006. Foundations of Cyclopean Perception. MIT Press.
    20. Jung, Y. J., Lee, S.-i., Sohn, H., Wook Park, H., and Man Ro, Y. 2012. Visual comfort assessment metric based on salient object motion information in stereoscopic video. Journal of Electronic Imaging 21, 1, 011008-1–011008-16.
    21. Keelan, B. W. 2002. Predicting multivariate image quality from individual perceptual attributes. In PICS 2002: IS&T’s PICS Conference, An International Technical Conference on Digital Image Capture and Associated System, 82–87.
    22. Kellnhofer, P., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2013. Optimizing disparity for motion in depth. In Proc. of EGSR, vol. 32.
    23. Kim, C., Hornung, A., Heinzle, S., Matusik, W., and Gross, M. 2011. Multi-perspective stereoscopy from light fields. ACM Trans. Graph. 30 (Dec.), 190:1–190:10.
    24. Kim, Y., Lee, Y., Kang, H., and Lee, S. 2013. Stereoscopic 3d line drawing. ACM Trans. Graph. 32, 4 (July), 57:1–57:13.
    25. Konrad, J., Brown, G., Wang, M., Ishwar, P., Wu, C., and Mukherjee, D. 2012. Automatic 2d-to-3d image conversion using 3d examples from the internet. vol. 8288, 82880F-82880F-12.
    26. Kooi, F. L., and Toet, A. 2004. Visual comfort of binocular and 3D displays. Displays 25, 99–108.
    27. Lambooij, M., IJsselsteijn, W., and Fortuin, M. 2009. Visual discomfort and visual fatigue of stereoscopic displays: A review. Journal of Imaging Technology and Science 53, 1–14.
    28. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., and Gross, M. 2010. Nonlinear disparity mapping for stereoscopic 3d. ACM Trans. Graph. 29, 3, 10.
    29. Lee, B., and Rogers, B. 1997. Disparity modulation sensitivity for narrow-band-filtered stereograms. Vision Research 37, 1769–1777.
    30. Li, J., Barkowsky, M., and Le Callet, P. 2011. The influence of relative disparity and planar motion velocity on visual discomfort of stereoscopic videos. In Third International Workshop on Quality of Multimedia Experience (QoMEX), 2011, 155–160.
    31. Li, J., Barkowsky, M., Wang, J., and Callet, P. L. 2011. Study on visual discomfort induced by stimulus movement at fixed depth on stereoscopic displays using shutter glasses. In International Conference on Digital Signal Processing, 1–8.
    32. Lo, W.-Y., van Baar, J., Knaus, C., Zwicker, M., and Gross, M. H. 2010. Stereoscopic 3d copy & paste. ACM Trans. Graph. 29, 6, 147.
    33. Luo, S.-J., Shen, I.-C., Chen, B.-Y., Cheng, W.-H., and Chuang, Y.-Y. 2012. Perspective-aware warping for seamless stereoscopic image cloning. Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2012) 31, 6, 182:1–182:8.
    34. Mantiuk, R., Myszkowski, K., and Seidel, H.-P. 2006. A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl. Percept. 3, 3 (July), 286–308.
    35. Mantiuk, R., Kim, K. J., Rempel, A. G., and Heidrich, W. 2011. HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30, 4, 40:1–40:14.
    36. Masia, B., Wetzstein, G., Aliaga, C., Raskar, R., and Gutierrez, D. 2013. Display Adaptive 3D Content Remapping. Computers & Graphics 37, 8.
    37. Mendiburu, B. 2009. 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal Press.
    38. Ninassi, A., Le Meur, O., Le Callet, P., and Barba, D. 2009. Considering temporal variations of spatial visual distortions in video quality assessment. IEEE Journal of Selected Topics in Signal Processing 3, 2, 253–265.
    39. Niu, Y., Feng, W.-C., and Liu, F. 2012. Enabling warping on stereoscopic images. Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2012) 31, 6.
    40. Oskam, T., Hornung, A., Bowles, H., Mitchell, K., and Gross, M. 2011. OSCAM – Optimized stereoscopic camera control for interactive 3D. ACM Trans. on Graph. 30, 6, 189:1–189:8.
    41. Ostberg, O. 1980. Accommodation and visual fatigue in display work. Displays 2, 2, 81–85.
    42. Palmer, S. E. 1999. Vision Science: Photons to Phenomenology. The MIT Press.
    43. Pollock, B. T., Burton, M., Kelly, J. W., Gilbert, S., and Winer, E. 2012. The Right View from the Wrong Location: Depth Perception in Stereoscopic Multi-User Virtual Environments. IEEE Transactions on Visualization and Computer Graphics 18, 581–588.
    44. Rubinstein, M., Gutierrez, D., Sorkine, O., and Shamir, A. 2010. A comparative study of image retargeting. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 29, 5, 160:1–160:10.
    45. Shibata, T., Kim, J., Hoffman, D. M., and Banks, M. S. 2011. The zone of comfort: Predicting visual discomfort with stereo displays. Journal of Vision 11, 8.
    46. Smolic, A., Kauff, P., Knorr, S., Hornung, A., Kunter, M., Muller, M., and Lang, M. 2011. Three-dimensional video postproduction and processing. Proceedings of the IEEE 99, 4, 607–625.
    47. Smolic, A., Poulakos, S., Heinzle, S., Greisen, P., Lang, M., Hornung, A., Farre, M., Stefanoski, N., Wang, O., Schnyder, L., Monroy, R., and Gross, M. 2011. Disparity-aware stereo 3d production tools. In Visual Media Production (CVMP), 2011 Conference for, 165–173.
    48. Speranza, F., Tam, W. J., Renaud, R., and Hur, N. 2006. Effect of disparity and motion on visual comfort of stereoscopic images. In Proceedings of the SPIE, vol. 6055, 94–103.
    49. Tam, W. J., Speranza, F., Yano, S., Shimono, K., and Ono, H. 2011. Stereoscopic 3d-tv: Visual comfort. IEEE Transactions on Broadcasting 57, 2, 335–346.
    50. Templin, K., Didyk, P., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2012. Highlight Microdisparity for Improved Gloss Depiction. ACM Trans. Graph. 31, 4.
    51. Ukai, K., and Howarth, P. A. 2008. Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations. Displays 29, 106–116.
    52. Yang, X., Zhang, L., Wong, T.-T., and Heng, P.-A. 2012. Binocular tone mapping. ACM Trans. Graph. 31, 4 (July), 93:1–93:10.
    53. Yano, S., Ide, S., Mitsuhashi, T., and Thwaites, H. 2002. A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays 23, 191–201.
    54. Yano, S., Emoto, M., and Mitsuhashi, T. 2004. Two factors in visual fatigue caused by stereoscopic HDTV images. Displays 25, 141–150.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org