“An efficient construction of reduced deformable objects”
Conference:
Type(s):
Title:
- An efficient construction of reduced deformable objects
Session/Category Title: Dressing and Jiggling Soft Bodies
Presenter(s)/Author(s):
Abstract:
Many efficient computational methods for physical simulation are based on model reduction. We propose new model reduction techniques for the approximation of reduced forces and for the construction of reduced shape spaces of deformable objects that accelerate the construction of a reduced dynamical system, increase the accuracy of the approximation, and simplify the implementation of model reduction. Based on the techniques, we introduce schemes for real-time simulation of deformable objects and interactive deformation-based editing of triangle or tet meshes. We demonstrate the effectiveness of the new techniques in different experiments with elastic solids and shells and compare them to alternative approaches.
References:
1. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5 (Dec.), 165:1–165:10.
2. Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3 (July), 982–990.
3. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Trans. Graph. 27, 5 (Dec.), 163:1–163:10.
4. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 53:1–53:9.
5. Barbič, J., Sin, F., and Grinspun, E. 2012. Interactive editing of deformable simulations. ACM Trans. Graph. 31, 4, 70:1–70:8.
6. Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational harmonic maps for space deformation. ACM Trans. Graph. 28, 3 (July), 34:1–34:11.
7. Blumensath, T., and Davies, M. 2010. Normalized iterative hard thresholding: Guaranteed stability and performance. IEEE J. Sel. Topics Signal Process. 4, 2 (April), 298–309.
8. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graphics 14, 1 (Jan.), 213–230.
9. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Computer Graphics Forum 26, 3, 339–347.
10. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Levy, B. 2010. Polygon Mesh Processing. AK Peters.
11. Bro, R., and De Jong, S. 1997. A fast non-negativity-constrained least squares algorithm. Journal of Chemometrics 11, 5, 393–401.
12. Cevher, V. 2011. On Accelerated Hard Thresholding Methods for Sparse Approximation. In Wavelets and Sparsity XIV, vol. 8138.
13. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic shells: a practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5 (Dec.), 119:1–119:10.
14. Choi, M. G., and Ko, H.-S. 2005. Modal warping: Realtime simulation of large rotational deformation and manipulation. IEEE Trans. Vis. Comput. Graphics 11, 1 (Jan.), 91–101.
15. Dennis, J., and Schnabel, R. 1987. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Classics in Applied Mathematics. SIAM.
16. Foucart, S. 2011. Hard thresholding pursuit: An algorithm for compressive sensing. SIAM J. Numer. Anal. 49, 6, 2543–2563.
17. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete Shells. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 62–67.
18. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. 2012. Rig-space physics. ACM Trans. Graph. 31, 4 (July), 72:1–72:8.
19. Harmon, D., and Zorin, D. 2013. Subspace integration with local deformations. ACM Trans. Graph. 32, 4, 107:1–107:10.
20. Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30 (October), 119:1–119:11.
21. Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2012. Interactive spacetime control of deformable objects. ACM Trans. Graph. 31, 4 (July), 71:1–71:8.
22. Huang, J., Tong, Y., Zhou, K., Bao, H., and Desbrun, M. 2011. Interactive shape interpolation through controllable dynamic deformation. Trans. Vis. Comput. Graph. 17, 7, 983–992.
23. Hughes, T. 2000. The finite element method: linear static and dynamic finite element analysis. Dover Publications.
24. Idelsohn, S. R., and Cardona, A. 1985. A reduction method for nonlinear structural dynamic analysis. Computer Methods in Applied Mechanics and Engineering 49, 3, 253–279.
25. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Trans. Graph. 31, 4 (July), 77:1–77:10.
26. Kim, T., and Delaney, J. 2013. Subspace fluid re-simulation. ACM Trans. Graph. 32, 4 (July), 62:1–62:9.
27. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28, 123:1–123:9.
28. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Meth. Eng. 51, 4, 479–504.
29. Lawson, C. L., and Hanson, R. J. 1974. Solving Least Square Problems. Prentice Hall.
30. Meyer, M., and Anderson, J. 2007. Key point subspace acceleration and soft caching. ACM Trans. Graph. 26, 3 (July).
31. Morales, J. L., and Nocedal, J. 2011. Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization”. ACM Trans. Math. Softw. 38, 1, 7:1–7:4.
32. Pentland, A., and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. SIGGRAPH Comput. Graph. 23, 3 (July), 207–214.
33. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23, 514–521.
34. Sifakis, E., and Barbič, J. 2012. FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction. In SIGGRAPH Courses, 20:1–20:50.
35. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. ACM Trans. Graph. 26, 3.
36. Tiso, P. 2011. Optimal second order reduction basis selection for nonlinear transient analysis. In Modal Analysis Topics, vol. 6. Springer, 27–39.
37. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Trans. Graph. 25, 826–834.
38. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. ACM Trans. Graph. 28, 39:1–39:8.
39. Zhao, Y., and Barbič, J. 2013. Interactive authoring of simulation-ready plants. ACM Trans. Graph. 32, 4, 84:1–84:12.


