“Designing and fabricating mechanical automata from mocap sequences” – ACM SIGGRAPH HISTORY ARCHIVES

“Designing and fabricating mechanical automata from mocap sequences”

  • 2013 SA Technical Papers_Ceylan_Designing and Fabricating Mechanical Automata from Mocap Sequences

Conference:


Type(s):


Title:

    Designing and fabricating mechanical automata from mocap sequences

Session/Category Title:   Avatars


Presenter(s)/Author(s):



Abstract:


    Mechanical figures that mimic human motions continue to entertain us and capture our imagination. Creating such automata requires expertise in motion planning, knowledge of mechanism design, and familiarity with fabrication constraints. Thus, automaton design remains restricted to only a handful of experts. We propose an automatic algorithm that takes a motion sequence of a humanoid character and generates the design for a mechanical figure that approximates the input motion when driven with a single input crank. Our approach has two stages. The motion approximation stage computes a motion that approximates the input sequence as closely as possible while remaining compatible with the geometric and motion constraints of the mechanical parts in our design. Then, in the layout stage, we solve for the sizing parameters and spatial layout of all the elements, while respecting all fabrication and assembly constraints. We apply our algorithm on a range of input motions taken from motion capture databases. We also fabricate two of our designs to demonstrate the viability of our approach.

References:


    1. Anantha, R., Kramer, G. A., and Crawford, R. H. 1996. Assembly modelling by geometric constraint satisfaction. Computer-Aided Design 28, 9, 707–722.
    2. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. Proc. ACM SIGGRAPH 31, 4, 47:1–47:9.
    3. Bommes, D., Zimmer, H., and Kobbelt, L. 2012. Practical mixed-integer optimization for geometry processing. In Intl. Conf. of Curves and Surfaces, 193–206.
    4. Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3d-printing of non-assembly, articulated models. ACM TOG (SIGGRAPH Asia) 31, 6, 130:1–130:8.
    5. Carnegie Mellon University, 2003. Cmu graphics lab motion capture database.
    6. Chiou, S.-J., and Sridhar, K. 1999. Automated conceptual design of mechanisms. Mechanism and Machine Theory 34, 3, 467–495.
    7. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. Proc. ACM SIGGRAPH 32, 4 (July), 83:1–83:12.
    8. Freudenstein, F. 2010. Approximate synthesis of four-bar linkages. Resonance 15, 8, 740–767.
    9. Gurobi Optimization, I., 2012. Gurobi optimizer reference manual.
    10. Haller, K., John, A. L.-S., Sitharam, M., Streinu, I., and White, N. 2009. Body-and-cad geometric constraint systems. In Proc. Symp. on Applied Computing, ACM, 1127–1131.
    11. Han, Y.-H., and Lee, K. 2006. A case-based framework for reuse of previous design concepts in conceptual synthesis of mechanisms. Computers in Industry 57, 4, 305–318.
    12. iPi Soft LLC., 2013. ipi soft – markerless mocap.
    13. Kim, J., Kim, K., Choi, K., and Lee, J. 2000. Solving 3d geometric constraints for assembly modelling. The International Journal of Advanced Manufacturing Technology 16, 843–849.
    14. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: partitioning models into 3d-printable parts. ACM TOG (SIGGRAPH Asia) 31, 6, 129:1–129:9.
    15. McCarthy, J. 2000. Geometric Design of Linkages. Interdisciplinary Applied Mathematics Series. Springer Verlag.
    16. Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. Proc. ACM SIGGRAPH 29, 3.
    17. Peng, X., Lee, K., and Chen, L. 2006. A geometric constraint solver for 3-d assembly modeling. The International Journal of Advanced Manufacturing Technology 28, 561–570.
    18. Pollard, N., Hodgins, J. K., Riley, M., and Atkeson, C. 2002. Adapting human motion for the control of a humanoid robot. In IEEE ICRA.
    19. Roy, U., Pramanik, N., Sudarsan, R., Sriram, R., and Lyons, K. 2001. Function-to-form mapping: model, representation and applications in design synthesis. Computer-Aided Design 33, 10, 699–719.
    20. Safonova, A., Pollard, N., and Hodgins, J. K. 2003. Optimizing human motion for the control of a humanoid robot. In Intl. Symp. on Adaptive Motion of Animals and Machines.
    21. Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware Design with Intersecting Planar Pieces. Computer Graphics Forum 32, 2, 317–326.
    22. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3d printable objects. Proc. ACM SIGGRAPH 31, 4, 48:1–48:11.
    23. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. Proc. ACM SIGGRAPH 31, 4, 86:1–86:11.
    24. Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. ACM TOG (SIGGRAPH Asia) 28, 3, 35:1–35:9.
    25. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM TOG (SIGGRAPH Asia) 31, 6, 127:1–127:10.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org