“A search-classify approach for cluttered indoor scene understanding” by Nan, Xie and Sharf
Conference:
Type(s):
Title:
- A search-classify approach for cluttered indoor scene understanding
Session/Category Title: Acquiring and Synthesizing Indoor Scenes
Presenter(s)/Author(s):
Abstract:
We present an algorithm for recognition and reconstruction of scanned 3D indoor scenes. 3D indoor reconstruction is particularly challenging due to object interferences, occlusions and overlapping which yield incomplete yet very complex scene arrangements. Since it is hard to assemble scanned segments into complete models, traditional methods for object recognition and reconstruction would be inefficient. We present a search-classify approach which interleaves segmentation and classification in an iterative manner. Using a robust classifier we traverse the scene and gradually propagate classification information. We reinforce classification by a template fitting step which yields a scene reconstruction. We deform-to-fit templates to classified objects to resolve classification ambiguities. The resulting reconstruction is an approximation which captures the general scene arrangement. Our results demonstrate successful classification and reconstruction of cluttered indoor scenes, captured in just few minutes.
References:
1. Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., and Ng, A. 2005. Discriminative learning of markov random fields for segmentation of 3d scan data. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) – Volume 2 – Volume 02, CVPR ’05, 169–176.
2. Belongie, S., Malik, J., and Puzicha, J. 2002. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522.
3. Belongie, S., Malik, J., and Puzicha, J. 2002. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24 (April), 509–522.
4. Bochkanov, S., 2012. Alglib library. http://www.alglib.net/.
5. Breiman, L. 2001. Random forests. Mach. Learn. 45, 5–32.
6. Dick, A. R., Torr, P. H. S., and Cipolla, R. 2004. Modelling and interpretation of architecture from several images. Int. J. Comput. Vision 60, 2, 111–134.
7. Fei-Fei, L., Fergus, R., and Perona, P. 2007. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106, 59–70.
8. Fisher, M., and Hanrahan, P. 2010. Context-based search for 3d models. In ACM SIGGRAPH Asia 2010 papers, 182:1–182:10.
9. Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural relationships in scenes using graph kernels. ACM Trans. Graph., 34:1–34:12.
10. Frome, A., Huber, D., Kolluri, R., and Bülow, T. 2004. Recognizing objects in range data using regional point descriptors. In ECCV, 224–237.
11. Frome, A., Huber, D., Kolluri, R., Bulow, T., and Malik, J. 2004. Recognizing objects in range data using regional point descriptors. In Proceedings of the European Conference on Computer Vision (ECCV).
12. Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. 2008. Upright orientation of man-made objects. In ACM SIGGRAPH 2008, 42:1–42:7.
13. Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. 2009. Reconstructing building interiors from images.
14. Gal, R., Shamir, A., Hassner, T., Pauly, M., and Cohen-Or, D. 2007. Surface reconstruction using local shape priors. In Proc. of Eurographics Symp. on Geometry Processing, 253–262.
15. Galleguillos, C., Rabinovich, A., and Belongie, S. 2008. Object categorization using co-occurrence, location and appearance. IEEE Conference on Computer Vision and Pattern Recognition (2008), 1–8.
16. Goesele, M., Snavely, N., Curless, B., Hoppe, H., and Seitz, S. 2007. Multi-view stereo for community photo collections. In Proc. of Int. Conf. on Comp. Vis., 1–8.
17. Golovinskiy, A., Kim, V. G., and Funkhouser, T. 2009. Shape-based recognition of 3D point clouds in urban environments. International Conference on Computer Vision (ICCV) (Sept.).
18. Hedau, V., Hoiem, D., and Forsyth, D. 2010. Thinking inside the box: using appearance models and context based on room geometry. In Proc. Euro. Conf. on Comp. Vis., 224–237.
19. Johnson, A. E., and Hebert, M. 1999. Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21 (May), 433–449.
20. Kim, Y. M., Mitra, N. J., Yan, D., and Guibas, L. 2012. Acquiring 3d indoor environments with variability and repetition. In ACM SIGGRAPH, “to appear”.
21. Koppula, H. S., Anand, A., Joachims, T., and Saxena, A. 2011. Semantic labeling of 3d point clouds for indoor scenes. In NIPS, 244–252.
22. Lai, K., and Fox, D. 2010. Object recognition in 3d point clouds using web data and domain adaptation. International Journal of Robotics Research 29, 1019–1037.
23. Lai, K., Bo, L., Ren, X., and Fox, D. 2011. A large-scale hierarchical multi-view rgb-d object dataset. 2011 IEEE International Conference on Robotics and Automation, 1817–1824.
24. Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D., and Mitra, N. J. 2011. Globfit: consistently fitting primitives by discovering global relations. In ACM SIGGRAPH, 52:1–52:12.
25. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., and El-Sana, J. 2010. Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. Graph. 29, 151:1–151:8.
26. Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110.
27. Matei, B., Shan, Y., Sawhney, H. S., Tan, Y., Kumar, R., Huber, D., and Hebert, M. 2006. Rapid object indexing using locality sensitive hashing and joint 3d-signature space estimation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1111–1126.
28. Munoz, D., Bagnell, J. A., Vandapel, N., and Hebert, M. 2009. Contextual classification with functional max-margin markov networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
29. Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., and Chen, B. 2010. Smartboxes for interactive urban reconstruction. Proc. of ACM SIGGRAPH 29, 4, 1–10.
30. Pollefeys, M., Nistér, D., Frahm, J. M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S. J., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewénius, H., Yang, R., Welch, G., and Towles, H. 2008. Detailed real-time urban 3D reconstruction from video. Int. J. Comput. Vision 78, 2–3, 143–167.
31. Quigley, M., Batra, S., Gould, S., Klingbeil, E., Le, Q., Wellman, A., and Ng, A. Y. 2009. High-accuracy 3d sensing for mobile manipulation: improving object detection and door opening. In Proceedings of the 2009 IEEE international conference on Robotics and Automation, 3604–3610.
32. Schnabel, R., Wahl, R., and Klein, R. 2007. Efficient ransac for point-cloud shape detection. Computer Graphics Forum 26, 2, 214–226.
33. Schnabel, R., Degener, P., and Klein, R. 2009. Completion and reconstruction with primitive shapes. Computer Graphics Forum (Proc. of Eurographics) 28, 2, 503–512.
34. Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., and Guo, B. 2012. An interactive approach to semantic modeling of indoor scenes with an rgbd camera. In ACM SIGGRAPH, “to appear”.
35. Shen, C.-H., Huang, S.-S., Fu, H., and Hu, S.-M. 2011. Adaptive partitioning of urban facades. In Proceedings of the 2011 SIGGRAPH Asia Conference, 184:1–184:10.
36. Shotton, J., Johnson, M., and Cipolla, R. 2008. Semantic texton forests for image categorization and segmentation. In Int. Conf. Computer Vision and Pattern Recognition.
37. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. 2011. Real-Time human pose recognition in parts from a single depth image. In CVPR.
38. Silberman, N., and Fergus, R. 2011. Indoor scene segmentation using a structured light sensor. In Proc. of Int. Conf. on Comp. Vis.
39. Sinha, S. N., Steedly, D., Szeliski, R., Agrawala, M., and Pollefeys, M. 2008. Interactive 3D architectural modeling from unordered photo collections. ACM Trans. on Graphics 27, 5, 1–10.
40. Ullman, S. 1996. High-Level Vision: Object Recognition and Visual Cognition. The MIT Press.
41. Viola, P., and Jones, M. J. 2004. Robust real-time face detection. Int. J. Comput. Vision 57, 137–154.
42. Vosselman, G., Gorte, B. G. H., Sithole, G., and Rabbani, T. 2004. Recognising structure in laser scanner point clouds. Information Sciences, 1–6.
43. Werner, T., and Zisserman, A. 2002. New techniques for automated architecture reconstruction from photographs. In Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, vol. 2, 541–555.
44. Xiao, J., Fang, T., Tan, P., Zhao, P., Ofek, E., and Quan, L. 2008. Image-based façade modeling. ACM Trans. on Graphics 27, 5, 1–10.
45. Xiong, X., and Huber, D. 2010. Using context to create semantic 3d models of indoor environments. In Proceedings of the British Machine Vision Conference, 45.1–45.11.
46. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z.-Q. 2010. Style-content separation by anisotropic part scales. In ACM SIGGRAPH Asia 2010 papers, 184:1–184:10.
47. Xu, K., Zheng, H., Zhang, H., Cohen-Or, D., Liu, L., and Xiong, Y. 2011. Photo-inspired model-driven 3d object modeling. ACM Transactions on Graphics, (Proc. of SIGGRAPH 2011) 30, 4, to appear.
48. Zheng, Q., Sharf, A., Wan, G., Li, Y., Mitra, N. J., Cohen-Or, D., and Chen, B. 2010. Non-local scan consolidation for 3d urban scenes. Proc. of ACM SIGGRAPH 29, 1–9.


