“Interactive hair rendering and appearance editing under environment lighting”
Conference:
Type(s):
Title:
- Interactive hair rendering and appearance editing under environment lighting
Session/Category Title: Cameras and Appearance
Presenter(s)/Author(s):
Abstract:
We present an interactive algorithm for hair rendering and appearance editing under complex environment lighting represented as spherical radial basis functions (SRBFs). Our main contribution is to derive a compact 1D circular Gaussian representation that can accurately model the hair scattering function introduced by [Marschner et al. 2003]. The primary benefit of this representation is that it enables us to evaluate, at run-time, closed-form integrals of the scattering function with each SRBF light, resulting in efficient computation of both single and multiple scatterings. In contrast to previous work, our algorithm computes the rendering integrals entirely on the fly and does not depend on expensive pre-computation. Thus we allow the user to dynamically change the hair scattering parameters, which can vary spatially. Analyses show that our 1D circular Gaussian representation is both accurate and concise. In addition, our algorithm incorporates the eccentricity of the hair. We implement our algorithm on the GPU, achieving interactive hair rendering and simultaneous appearance editing under complex environment maps for the first time.
References:
1. Ben-Artzi, A., Overbeck, R., and Ramamoorthi, R. 2006. Real-time BRDF editing in complex lighting. ACM Trans. Graph. 25, 3, 945–954. Google ScholarDigital Library
2. Bonneel, N., Paris, S., van de Panne, M., Durand, F., and Drettakis, G. 2009. Single photo estimation of hair appearance. Computer Graphics Forum 28, 4, 1171C-1180. Google ScholarDigital Library
3. Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range radiance maps from photographs. In Proc. of ACM SIGGRAPH, 369–378. Google ScholarDigital Library
4. d’Eon, E., Francois, G., Hill, M., Letteri, J., and Aubry, J.-M. 2011. An energy-conserving hair reflectance model. Computer Graphics Forum 30, 4, 1181–1187. Google ScholarDigital Library
5. Green, P., Kautz, J., and Durand, F. 2007. Efficient reflectance and visibility approximations for environment map rendering. Computer Graphics Forum 26, 3, 495–502.Google ScholarCross Ref
6. Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164. Google ScholarDigital Library
7. Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with three dimensional textures. In Proc. of ACM SIGGRAPH, 271–280. Google ScholarDigital Library
8. Kim, T.-Y., and Neumann, U. 2001. Opacity shadow maps. In Proc. of Eurographics Rendering Workshop, 177–182. Google ScholarDigital Library
9. Lokovic, T., and Veach, E. 2000. Deep shadow maps. In Proc. of ACM SIGGRAPH, 385–392. Google ScholarDigital Library
10. Marschner, S. R., Jensen, H. W., Cammarano, M., Worley, S., and Hanrahan, P. 2003. Light scattering from human hair fibers. ACM Trans. Graph. 22, 3, 780–791. Google ScholarDigital Library
11. Mertens, T., Kautz, J., Bekaert, P., and Van Reeth, F. 2004. A self-shadow algorithm for dynamic hair using density clustering. In SIGGRAPH 2004 Sketches, 44. Google ScholarDigital Library
12. Moon, J. T., and Marschner, S. R. 2006. Simulating multiple scattering in hair using a photon mapping approach. ACM Trans. Graph. 25, 3, 1067–1074. Google ScholarDigital Library
13. Moon, J. T., Walter, B., and Marschner, S. 2008. Efficient multiple scattering in hair using spherical harmonics. ACM Trans. Graph. 27, 3, 31:1–31:7. Google ScholarDigital Library
14. Navarro, F., Gutierrez, D., and Sern, F. 2009. Interactive hdr lighting of dynamic participating media. The Visual Computer 25, 4, 339–347. Google ScholarDigital Library
15. Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair Photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1–30:9. Google ScholarDigital Library
16. Ren, Z., Zhou, K., Li, T., Hua, W., and Guo, B. 2010. Interactive hair rendering under environment lighting. ACM Trans. Graph. 29, 4, 55:1–55:8. Google ScholarDigital Library
17. Sadeghi, I., Pritchett, H., Jensen, H. W., and Tamstorf, R. 2010. An artist friendly hair shading system. ACM Trans. Graph. 29, 4, 56:1–56:10. Google ScholarDigital Library
18. Schlick, C. 1994. An inexpensive BRDF model for physically-based rendering. Computer Graphics Forum 13, 3, 233–246.Google ScholarCross Ref
19. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. Graph. 27, 3, 64. Google ScholarDigital Library
20. Shinya, M., Shiraishi, M., Dobashi, Y., Iwasaki, K., and Nishita, T. 2010. A simplified plane-parallel scattering model and its application to hair rendering. Pacific Conference on Computer Graphics and Applications, 85–92. Google ScholarDigital Library
21. Silva, P., Bando, Y., Chen, B.-Y., and Nishita, T. 2010. Curling and clumping fur represented by texture layers. The Visual Computer 26, 6, 659–667. Google ScholarDigital Library
22. Sintorn, E., and Assarsson, U. 2008. Real-time approximate sorting for self shadowing and transparency in hair rendering. In Proc. of I3D, 157–162. Google ScholarDigital Library
23. Sintorn, E., and Assarsson, U. 2009. Hair self shadowing and transparency depth ordering using occupancy maps. In Proc. of I3D, 67–74. Google ScholarDigital Library
24. Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., and Guo, B. 2007. Interactive relighting with dynamic BRDFs. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
25. Sun, X., Zhou, K., Stollnitz, E., Shi, J., and Guo, B. 2008. Interactive relighting of dynamic refractive objects. ACM Trans. Graph. 27, 3, 1–9. Google ScholarDigital Library
26. Tsai, Y.-T., and Shih, Z.-C. 2006. All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. 25, 3, 967–976. Google ScholarDigital Library
27. Wang, R., Cheslack-Postava, E., Wang, R., Luebke, D., Chen, Q., Hua, W., Peng, Q., and Bao, H. 2008. Real-time editing and relighting of homogeneous translucent materials. Vis. Comput. 24, 7, 565–575. Google ScholarDigital Library
28. Wang, J., Ren, P., Gong, M., Snyder, J., and Guo, B. 2009. All-frequency rendering of dynamic, spatially-varying reflectance. ACM Trans. Graph. 28, 5, 133:1–133:10. Google ScholarDigital Library
29. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation, and rendering. IEEE Transactions on Visualization and Computer Graphics 13, 2, 213–234. Google ScholarDigital Library
30. Xu, K., Gao, Y., Li, Y., Ju, T., and Hu, S.-M. 2007. Real-time homogenous translucent material editing. Computer Graphics Forum 26, 3, 545–552.Google ScholarCross Ref
31. Yuksel, C., and Keyser, J. 2008. Deep opacity maps. Computer Graphics Forum 27, 2, 675–680.Google ScholarCross Ref
32. Zinke, A., and Weber, A. 2006. Global illumination for fiber based geometries. In SIACG 2006.Google Scholar
33. Zinke, A., and Weber, A. 2007. Light scattering from filaments. IEEE Transactions on Visualization and Computer Graphics 13, 2, 342–356. Google ScholarDigital Library
34. Zinke, A., Yuksel, C., Weber, A., and Keyser, J. 2008. Dual scattering approximation for fast multiple scattering in hair. ACM Trans. Graph. 27, 3, 32:1–32:10. Google ScholarDigital Library
35. Zinke, A., Rump, M., Lay, T., Weber, A., Andriyenko, A., and Klein, R. 2009. A practical approach for photometric acquisition of hair color. ACM Trans. Graph. 28, 5, 165:1–165:9. Google ScholarDigital Library


