“Physically-based interactive bi-scale material design”
Conference:
Type(s):
Title:
- Physically-based interactive bi-scale material design
Session/Category Title: Material Editing
Presenter(s)/Author(s):
Abstract:
We present the first physically-based interactive system to facilitate the appearance design at different scales consistently, through manipulations of both small-scale geometry and materials. The core of our system is a novel reflectance filtering algorithm, which rapidly computes the large-scale appearance from small-scale details, by exploiting the low-rank structures of the Bidirectional Visible Normal Distribution Function and pre-rotated BRDFs in the matrix formulation of our rendering problem. Our algorithm is three orders of magnitude faster than a ground-truth method. We demonstrate various editing results of different small-scale geometry with analytical and measured BRDFs. In addition, we show the applications of our system to physical realization of appearance, as well as modeling of real-world materials using very sparse measurements.
References:
1. Ashikmin, M., Premože, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Proc. of SIGGRAPH 2000, 65–74. Google ScholarDigital Library
2. Ben-Artzi, A., Overbeck, R., and Ramamoorthi, R. 2006. Real-time BRDF editing in complex lighting. In Proc. of SIGGRAPH 2006, 945–954. Google ScholarDigital Library
3. Brabec, S., Annen, T., and peter Seidel, H. 2002. Shadow mapping for hemispherical and omnidirectional light sources. In Proc. of Comp. Graph. Inter., 397–408.Google ScholarCross Ref
4. Bruneton, E., and Neyret, F. 2011. A survey of non-linear pre-filtering methods for efficient and accurate surface shading. To appear in IEEE Trans. Vis. Comput. Graph.. Google ScholarDigital Library
5. Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1 (January), 7–24. Google ScholarDigital Library
6. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29 (July), 62:1–62:10. Google ScholarDigital Library
7. Ershov, S., Durikovic, R., Kolchin, K., and Myszkowski, K. 2004. Reverse engineering approach to appearance-based design of metallic and pearlescent paints. Vis. Comput. 20 (November), 586–600. Google ScholarDigital Library
8. Gondek, J. S., Meyer, G. W., and Newman, J. G. 1994. Wavelength dependent reflectance functions. In Proc. of SIGGRAPH 94, 213–220. Google ScholarDigital Library
9. Green, P., Kautz, J., Matusik, W., and Durand, F. 2006. View-dependent precomputed light transport using nonlinear gaussian function approximations. In Proc. of I3D 2006, 7–14. Google ScholarDigital Library
10. Han, C., Sun, B., Ramamoorthi, R., and Grinspun, E. 2007. Frequency domain normal map filtering. ACM Trans. Graph. 26 (July), 28:1–28:11. Google ScholarDigital Library
11. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29 (July), 61:1–61:10. Google ScholarDigital Library
12. Heeger, D. J., and Bergen, J. R. 1995. Pyramid-based texture analysis/synthesis. In Proc. of SIGGRAPH 95, 229–238. Google ScholarDigital Library
13. Heidrich, W., Daubert, K., Kautz, J., and Seidel, H.-P. 2000. Illuminating micro geometry based on precomputed visibility. In Proc. of SIGGRAPH 2000, 455–464. Google ScholarDigital Library
14. Johnson, M. K., Cole, F., Raj, A., and Adelson, E. H. 2011. Microgeometry capture using an elastomeric sensor. ACM Trans. Graph. 30 (August), 46:1–46:8. Google ScholarDigital Library
15. Kajiya, J. T. 1986. The rendering equation. In Proc. of SIGGRAPH 86, 143–150. Google ScholarDigital Library
16. Kerr, W. B., and Pellacini, F. 2010. Toward evaluating material design interface paradigms for novice users. ACM Trans. Graph. 29 (July), 35:1–35:10. Google ScholarDigital Library
17. Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., and Greenberg, D. P. 1997. Non-linear approximation of reflectance functions. In Proc. of SIGGRAPH 97, 117–126. Google ScholarDigital Library
18. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graph. 22, 3, 759–769. Google ScholarDigital Library
19. Oren, M., and Nayar, S. K. 1994. Generalization of Lambert’s reflectance model. In Proc. of SIGGRAPH 94, 239–246. Google ScholarDigital Library
20. Pellacini, F., and Lawrence, J. 2007. AppWand: editing measured materials using appearance-driven optimization. ACM Trans. Graph. 26 (July), 54:1–54:9. Google ScholarDigital Library
21. Rusinkiewicz, S. M. 1998. A new change of variables for efficient BRDF representation. In Eurographics Workshop on Rendering, 11–22.Google ScholarCross Ref
22. Sloan, P.-P., Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for precomputed radiance transfer. In Proc. of SIGGRAPH 2003, 382–391. Google ScholarDigital Library
23. Tan, P., Lin, S., Quan, L., Guo, B., and Shum, H.-Y. 2005. Multiresolution reflectance filtering. In Rendering Techniques, 111–116. Google ScholarCross Ref
24. Vempala, S. 2004. The Random Projection Method. AMS.Google Scholar
25. Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. SIGGRAPH Comput. Graph. 26 (July), 255–264. Google ScholarDigital Library
26. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28 (July), 32:1–32:6. Google ScholarDigital Library
27. Wu, H., Dorsey, J., and Rushmeier, H. 2009. Characteristic point maps. Computer Graphics Forum 28, 4, 1227–1236. Google ScholarDigital Library
28. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2011. Building volumetric appearance models of fabric using micro CT imaging. ACM Trans. Graph. 30 (August), 44:1–44:10. Google ScholarDigital Library


