“Sketch-based Dynamic Illustration of Fluid Systems” – ACM SIGGRAPH HISTORY ARCHIVES

“Sketch-based Dynamic Illustration of Fluid Systems”

  • 2011-SA-Technical-Paper_Zhu_Sketch-based-Dynamic-Illustration-of-Fluid-Systems

Conference:


Type(s):


Title:

    Sketch-based Dynamic Illustration of Fluid Systems

Session/Category Title:   NPR


Presenter(s)/Author(s):



Abstract:


    This paper presents a lightweight sketching system that enables interactive illustration of complex fluid systems. Users can sketch on a 2.5-dimensional (2.5D) canvas to design the shapes and connections of a fluid circuit. These input sketches are automatically analyzed and abstracted into a hydraulic graph, and a new hybrid fluid model is used in the background to enhance the illustrations. The system provides rich simple operations for users to edit the fluid system incrementally, and the new internal flow patterns can be simulated in real time. Our system is used to illustrate various fluid systems in medicine, biology, and engineering. We asked professional medical doctors to try our system and obtained positive feedback from them.

References:


    1. Almeder, C. 1999. Hydrodynamic Modelling and Simulation of the Human Arterial Blood Flow. PhD thesis, Vienna University of Technology.Google Scholar
    2. Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In Proceedings of SCA ’06, 25–32. Google ScholarDigital Library
    3. Bridson, R. 2008. Fluid Simulation for Computer Graphics. A K Peters. Google ScholarDigital Library
    4. Cabral, B., and Leedom, L. C. 1993. Imaging vector fields using line integral convolution. In Proceedings of SIGGRAPH ’93, 263–270. Google ScholarDigital Library
    5. Cohen, J. M., Tariq, S., and Green, S. 2010. Interactive fluid-particle simulation using translating eulerian grids. In Proceedings of I3D ’10, 15–22. Google ScholarDigital Library
    6. Davis, R. C., Colwell, B., and Landay, J. A. 2008. K-sketch: a ‘kinetic’ sketch pad for novice animators. In Proceeding of CHI ’08, 413–422. Google ScholarDigital Library
    7. Davis, R. 2007. Magic paper: Sketch-understanding research. IEEE Computer 40, 9, 34–41. Google ScholarDigital Library
    8. Ebert, D. S., Sousa, M. C., Gooch, A., and Stredney, D. 2005. Computer-generated medical, technical, and scientific illustration. In ACM SIGGRAPH 2005 Courses. Google ScholarDigital Library
    9. Formaggia, L., and Veneziani, A. 2003. Reduced and multi-scale models for the human cardiovascular system. Lecture notes VKI, Lecture Series 2003-07 MOX Report 21.Google Scholar
    10. Gingold, Y., Igarashi, T., and Zorin, D. 2009. Structured annotations for 2d-to-3d modeling. ACM Trans. Graph. 28, 5, 148:1–148:9. Google ScholarDigital Library
    11. Igarashi, T., Matsuoka, S., and Tanaka, H. 1999. Teddy: A sketching interface for 3d freeform design. In Proceedings of SIGGRAPH ’99, 409–416. Google ScholarDigital Library
    12. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3, 1134–1141. Google ScholarDigital Library
    13. Ihm, I., Kang, B., and Cha, D. 2004. Animation of reactive gaseous fluids through chemical kinetics. In Proceedings of SCA ’04, 203–212. Google ScholarDigital Library
    14. Ijiri, T., Owada, S., and Igarashi, T. 2006. Seamless integration of initial sketching and subsequent detail editing in flower modeling. In Computer Graphics Forum, vol. 25, 617–624.Google ScholarCross Ref
    15. Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25, 3, 805–811. Google ScholarDigital Library
    16. Kang, N., Park, J., Noh, J., and Shin, S. Y. 2010. A hybrid approach to multiple fluid simulation using volume fractions. Computer Graphics Forum 29, 2, 685–694.Google ScholarCross Ref
    17. Laramee, R. S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F. H., and Weiskopf, D. 2004. The state of the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum 23, 2, 203–221.Google ScholarCross Ref
    18. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4, 99:1–99:17. Google ScholarDigital Library
    19. McCann, J., and Pollard, N. 2009. Local layering. ACM Trans. Graph. 28, 3, 84:1–84:7. Google ScholarDigital Library
    20. McLouglin, T., Laramee, R. S., Peikert, R., Post, F. H., and Chen, M. 2010. Over two decades of integration-based geometric flow visualization. Computer Graphics Forum 29, 6, 1807–1829.Google ScholarCross Ref
    21. Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. ACM Trans. Graph. 29, 4, 58:1–58:12. Google ScholarDigital Library
    22. Mittal, R., and Iaccarino, G. 2005. Immersed boundary methods. Annual Review of Fluid Mechanics 37, 1, 239–261.Google ScholarCross Ref
    23. Nobile, F. 2009. Coupling strategies for the numerical simulation of blood flow in deformable arteries by 3d and 1d models. Mathematical and Computer Modelling 11–12, 2152–2160. Google ScholarDigital Library
    24. Okabe, M., Anjyo, K., Igarashi, T., and Seidel, H.-P. 2009. Animating pictures of fluid using video examples. Computer Graphics Forum 28, 2, 677–686.Google ScholarCross Ref
    25. Post, F. H., Vrolijk, B., Hauser, H., Laramee, R. S., and Doleisch, H. 2003. The state of the art in flow visualisation: Feature extraction and tracking. Computer Graphics Forum 22, 4, 775–792.Google ScholarCross Ref
    26. Runge, M. S., and Ohman, M. 2004. Netter’s Cardiology. Icon Learning Systems, New Jersey.Google Scholar
    27. Schroeder, D., Coffey, D., and D. Keefe. 2010. Drawing with the flow: A sketch-based interface for illustrative visualization of 2d vector fields. In Proceedings of SBIM ‘2010, 49–56. Google ScholarDigital Library
    28. Sewall, J., Wilkie, D., Merrell, P., and Lin, M. C. 2010. Continuum traffic simulation. Computer Graphics Forum 29, 2, 439–448.Google ScholarCross Ref
    29. Stam, J. 1999. Stable fluids. In Proceedings of SIGGRAPH ’99, 121–128. Google ScholarDigital Library
    30. Turk, G., and Banks, D. 1996. Image-guided streamline placement. In Proceedings of SIGGRAPH ’96, 453–460. Google ScholarDigital Library
    31. Vainio, T., Hakkarainen, K., and Levonen, J. 2005. Visualizing complex medical phenomena for medical students. In CHI ’05 extended abstracts, 1857–1860. Google ScholarDigital Library
    32. Yu, Q., Neyret, F., Bruneton, E., and Holzschuch, N. 2009. Scalable real-time animation of rivers. Computer Graphics Forum 28, 2, 239–248.Google ScholarCross Ref
    33. Zeleznik, R. C., Herndon, K. P., and Hughes, J. F. 1996. Sketch: an interface for sketching 3d scenes. In Proceedings of SIGGRAPH ’96, 163–170. Google ScholarDigital Library
    34. Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector field design on surfaces. ACM Trans. Graph. 25, 4, 1294–1326. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org