“VirtualStudio2Go: digital video composition for real environments” – ACM SIGGRAPH HISTORY ARCHIVES

“VirtualStudio2Go: digital video composition for real environments”

  • ©

Conference:


Type(s):


Title:

    VirtualStudio2Go: digital video composition for real environments

Session/Category Title:   Colourisation & upsampling


Presenter(s)/Author(s):



Abstract:


    We synchronize film cameras and LED lighting with off-the-shelf video projectors. Radiometric compensation allows displaying keying patterns and other spatial codes on arbitrary real world surfaces. A fast temporal multiplexing of coded projection and flash illumination enables professional keying, environment matting, displaying moderator information, scene reconstruction, and camera tracking for non-studio film sets without being limited to the constraints of a virtual studio. This makes digital video composition more flexible, since static studio equipment, such as blue screens, teleprompters, or tracking devices, is not required. Authentic film locations can be supported with our portable system without causing a lot of installation effort.

References:


    1. Bimber, O., Emmerling, A., and Klemmer, T. 2005. Embedded Entertainment with Smart Projectors. IEEE Computer 38, 1, 56–63. Google ScholarDigital Library
    2. Bimber, O., Iwai, D., Wetzstein, G., and Grundhoefer, A. 2007. The Visual Computing of Projector-Camera Systems. In Proc. Eurographics (State-of-the-Art Report), 23–46.Google Scholar
    3. Choudhury, B., Singla, D., and Chandran, S. 2008. Fast color-space decomposition based environment matting. In SI3D ’08: Proceedings of the 2008 symposium on Interactive 3D graphics and games, ACM, New York, NY, USA, 1–1. Google Scholar
    4. Chuang, Y.-Y., Zongker, D. E., Hindordd, J., Curless, B., Salesin, D. H., and Szeliski, R. 2000. Environment matting extensions: Towards higher accuracy and real-time capture. In Proceedings of ACM SIGGRAPH 2000, ACM Press / ACM SIGGRAPH / Addison Wesley Logman, Computer Graphics Proceedings, Annual Conference Series, 121–130. ISBN 1-58113-208-5. Google Scholar
    5. Cotting, D., Näf, M., Gross, M. H., and Fuchs, H. 2004. Embedding imperceptible patterns into projected images for simultaneous acquisition and display. In Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’04), 100–109. Google ScholarCross Ref
    6. Cotting, D., Ziegler, R., Gross, M. H., and Fuchs, H. 2005. Adaptive instant displays: Continuously calibrated projections using per-pixel light control. In Proceedings Eurographics 2005, 705–714. Eurographics 2005, Dublin, Ireland, August 29 — September 2, 2005.Google Scholar
    7. Fukaya, T., Fujikake, H., Yamanouchi, Y., Mitsumine, H., Yagi, N., Inoue, S., and Kikuchi, H. 2003. An effective interaction tool for performance in the virtual studio — invisible light projection system. NHK Science and Technical Research Laboratories.Google Scholar
    8. Graham, T., and Richard, R. 2005. Flash-based keying. European Patent Application EP1499117.Google Scholar
    9. Grau, O., Pullen, T., and Thomas, G. A. 2004. A combined studio production system for 3-d capturing of live action and immersive actor feedback. IEEE Transactions on Circuits and Systems for Video Technology 14, 3, 370–380. Google ScholarDigital Library
    10. Grundhöfer, A., Seeger, M., Häntsch, F., and Bimber, O. 2007. Dynamic Adaptation of Projected Imperceptible Codes. Proc. of IEEE International Symposium on Mixed and Augmented Reality. Google Scholar
    11. Nayar, S. K., Peri, H., Grossberg, M. D., and Belhumeur, P. N. 2003. A Projection System with Radiometric Compensation for Screen Imperfections. In Proc. of IEEE International Workshop on Projector-Camera Systems (ProCams).Google Scholar
    12. Park, H., Lee, M.-H., Jin, B.-K. S. Y., and Park, J.-I. 2007. Content adaptive embedding of complementary patterns for non-intrusive direct-projected augmented reality. In HCI International 2007, vol. 14. Google ScholarDigital Library
    13. Peers, P., and Dutré, P. 2003. Wavelet environment matting. In EGRW ’03: Proceedings of the 14th Eurographics workshop on Rendering, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 157–166. Google ScholarDigital Library
    14. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and Fuchs, H. 1998. The office of the future: A unified approach to image-based modeling and spatially immersive displays. Computer Graphics 32, Annual Conference Series, 179–188. Google Scholar
    15. Sen, P., Chen, B., Garg, G., Marschner, S. R., Horowitz, M., Levoy, M., and Lensch, H. P. A. 2005. Dual Photography. In Proc. of ACM SIGGRAPH, 745–755. Google Scholar
    16. Shirai, A., Takahashi, M., Kobayashi, K., Mitsumine, H., and Richir, S. 2005. Lumina studio: Supportive information display for virtual studio environments. In Proc. of IEEE VR Workshop on Emerging Display Technologies, 17–20.Google Scholar
    17. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In ICCV, 839–846. Google Scholar
    18. Vieira, M. B., Velho, L., Sa, A., and Carvalho, P. C. 2005. A camera-projector system for real-time 3d video. In CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) — Workshops, IEEE Computer Society, Washington, DC, USA, 96. Google Scholar
    19. Waschbüsch, M., Würmlin, S., Cotting, D., Sadlo, F., and Gross, M. H. 2005. Scalable 3d video of dynamic scenes. The Visual Computer 21, 8-10, 629–638.Google ScholarCross Ref
    20. Wetzstein, G., and Bimber, O. 2007. Radiometric Compensation through Inverse Light Transport. Proc. of Pacific Graphics. Google Scholar
    21. Wojdala, A., Gruszsewski, M., and Olech, R. 2002. Real-time shadow casting in virtual studio. Machine Graphics and Vision (MGV) 9, 1/2, 315–329.Google Scholar
    22. Yoshida, T., Horii, C., and Sato, K. 2003. A Virtual Color Reconstruction System for Real Heritage with Light Projection. In Proc. of International Conference on Virtual Systems and Multimedia (VSMM), 161–168.Google Scholar
    23. Zhu, J., and Yang, Y.-H. 2004. Frequency-based environment matting. In PG ’04: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, IEEE Computer Society, Washington, DC, USA, 402–410. Google ScholarDigital Library
    24. Zollmann, S., and Bimber, O. 2007. Imperceptible calibration for radiometric compensation. In Proceedings Eurographics 2007, Short Paper.Google Scholar
    25. Zongker, D. E., Werner, D. M., Curless, B., and Salesin, D. H. 1999. Environment matting and compositing. In SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 205–214. Google Scholar


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org